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1. INTRODUCTION

The determination of the auclear radiation environment at some
point in a complex system is a difficult and often costly procedure.
However, because of the harmful effects that nuclear radiation has on
both organic systems such as man and inorganic systems such as elec-
tronic components and stiructurai materi.l, it is necessary to deter-
mine the environment in all systems that are exposed to any significant
amount of nuclear radiation. This is particularly true for certain sys-
tems which have heen of great corcern to the National Aeronautics and
Srace Administration (NASA) over the last 15 years. Fxamples in-
clude nuclear propulsion systerms such as NERVA (Nuclear Engine
Rocket Vehicle Applications) and RIFT (Reactor In Flight Test). The
SNAP (Systems for Nuclear Auxiliary Power) program resulted in the
design and coastruction of both nuciear and radioisotopic power plants,
S. AP type power systems have been used for poweriny experimental
packagic on the lunar surface (SNAT -27) and for the Nirabus satellite
(SNAP-19).

At the present time, NASA'S interest in nuclear systems is
much less than it has hbeen in the past. However, it is likely that in
the future many missions, especially those involving manned inter -
pianetary exploration, wili require nuclear systems. For example,
a manned Mars mission would be very difficult to accomplish with pre-
sent chemical propulsion capabilities, but almost ait of the technology
necessary for a Mirs mission using a N ‘RVA or NERVA type propulsion
system is available. Using nuclear systems for :arth escape, braking,
and return make the Mars mission a possibility ‘n the 1980's. One
aspect of the technology that requires further refinement and which
also impacts all phases of the mission is the radiation environment
produced by the nuclear propulsion system. This report discusses a
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study made of a technique to improve the calculation of the radiation
environment. The technique is called the iterative forward-adjoint
Monte Carlo method.

For a large class of radiation transport problems, only the
Monte Carlo method has proven to be a useful tool for effecting solutions.
This is primarily due to the fact that three -dimensionzal, time dependent
problems can be solved by the Mcnte Carlo method, while other methods
are usually restricted to orly two dimensinns. Monte Carlo suffers
from the disadvantage that as a probabilistic method, considerable
computer time is required for statistically meaningful results. 7This
limitation can be allevizted by the use of variance reduction techniques.
The research that has been performed in this study has identified
variance reduction techniques based on both the forward or normal
Monte Carlo solution and the adjoint Monte Carlo solution which can

be used to reduce the variance for a given amount of computation time.

In particular, the techniques vtilize the fact that the adjoint fluence
determined in an adjoint Monte Carlo calculation can be used to calculate
altered sampling distributions (for the source parameters, path length,
and past-collision parameters) to be used in the forward calculation.

The source term used in the adjoint calculation must be the detector
response function in the forward case. Random sampling from these
altered distributions, instead of the natural distribution, results in a
reduced variance of the effects of interest because the most "important"
part of the distribution is sampled most often, The forward fluence
determined in a forward calculation can likewise be used (o 2lter the
distribution function for the adjoint calculation. The validity of these
techniques has been discussed by many researchers (e.g., see
References 1-8). The earliest reference is contained in Herman Kahn's
Application of Monte Carlo (1), first published in 1954. He also
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suggested the use of the iterative forward-adjoint Monte Carlo (called
Method IV), stating ''As far as the author knows, Method IV has never
been used in a systematic fashion,'' By iteratively perfcrming the
forward and adjoint calculations, updating the altered sampling distri-
butions between each calculation, the sariance should reduce more
rapidly with each iteration, since be.cer values of the fluence (forward
and adjoint) are being deter mined.

The principal effort of this study has been to develop these
variance reduction techniques which can be applied to computation
methods, and a computer test bed written which will perform the
appropriate calculations for testing these different techniques of vsing
the forward or adjoint fluence to caiculate the altered sampling
distributions.

The general outline of an iterative forward-adjoint Monte Carlo
calculation is given below and diagrammed in Figure 1. It is assumed
that the particular problem of interest has been identified and the
necessary data obtained and p-epared in a form acceptable to the
computer program which employes the iterative forward-adjoint
variance reduction techniques. A discussion of such a program,
called IFAM for Iterative Forward-Adjoint MORSE, is given in
Chapter 3. The initial step in the calculation is the processing of input
data. This step is performed for both fcrward and adjoint data betore
any of the random walk calculations begin, Data whick is not in use
(e.g., adjoint data during the forvari mode random walk) is stored
on bulk storsye or data files units such as disk files. The input data
must also specify the initial mode - forward or adjoint - to be executed,
since this is left to the judgment of the user.

After the processing of the input data, the data for the initial
made is retrieved from the proper data file, data initialization performed
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and the data put into core. The initial mode, either forward or adjoint,
random walk is begun for the specified numbzr of batches and histories
per batch. During this calculation, the progrim executes only the
initial mode typ+ of random walks, but it employs input biasing param-
eters, if desired, to alter the scurce particle energy and direction,

the path length, and the energy downscattering distribution functions.
At the same time, datz is sicred for estimating the energy and angular
dependent flu: .ce in each importance region. Estimates are also
made of some =ffect of interest, such as the dose at the detector. This
process is continued until all histories have been <~ompleted for the
initial mode, at which time the output data is written, including the
estimate of the effect of interest and the energy and region dependent
fluence estimate. The data used or generated during this calculation
is stored back on the data fiie uaits for processing and use in the next

iteration.

The calculations performed in the second half of this first
iteration are very similar to those performed for the initial mode ex-
cept that the other mode type random walk will be executed and the
distribution functions will be altered with both the input biasing functions
and the erergy, angular and region dependent fluence from the initial
mode. The valiaity of using the initial mode finence for altering the
distribution functions is discussed in detail in Chapter 2, and the form
employed in this study is explained in Chapter 4., Retrieval of the
opposite mode data from the data file; initialization and generation of
the importance function is reguired before the random wslk calculations
can occur. At the completion .7 these calculations, the same results
as in the initial mode are ou‘pux both to the printer and to the data file
for this mode. This completes the first iteration which consists of
random walk calculations in both the forward and adjoint modes, Note
that at the end of each mode, an estimate of the effect of interest was
obtained.



The second and succeeding iterations are identical in format
tc the first iteration: data is retrieved for the initial mode data file,
initialization and importance function calculations are performed, then
the effect of interest and the flvence is estimated during the random
walk calculations followed by output and data storage for the initial
mode. The same steps are then performed for the opposite mode.
However, with eacn iter:tion, the fluence estimates approach the
actual value, thus improving the altered distribution functions and
hence reducing the variance of the effect of interest estimator with
cach iteration. An evaluation of the iterative forward-adjoini technique,
including some general guidelines for employing the technique, is given
in Chapter 5.
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2. THEORETICAL ASPECTS

The fundamental equat§on describing the :ransport of radia-
tion through matter is the Boltzmann transport equation.  This linear
integro-di{ferential equation is essentiallv a particle L.lance equation
in phase space. In Section 2.1, each term of this equation is defined
by discussing both the physical significant and the mathematical form
of each term, The physical assumptions upon which the transport
equation is based and which restrict its application are also presented.
Whereas the Boltzmann transport equation provides the basis for
numerical solution methods such as discrete ordinates and the moments
method, an integra! transport equation (i.e. Fredholm equation of the
second kind) is a better form for stochastic or Monte Carlo method
solutions, However, the integro-differential form seems to give a better
physical ingight into the radiation transport problem, and for that rea-
con the Boltzmann equation was chosen for the introductory discussion

of the iterative forward-adjoint Monte Carlo method.

Section 2. 2 presents a derivation of the integral transport
equation from basic definitions. The coneept of the emergent particle
density (or the densitv of particles leaving sources and collisions) is
also introducted. This concept is important to the Monte Carlo method
because the emergent particle de. sity eguation is the one simulated in
most Monte Carlo computer programs. The format of the presentation
in Section 2.2 and Section 2.3 follows that of the report by Goertzel and
Kalos (Ref. 2), which is an amplification of the fundamental work done
by Kahn (Ref. 1). Section 2. 3 illustrates the Monte Cario method by
an example transport game, and then uses this game to produce the
"perfect game’ by the introduction of the adjoint or importance function,
The implications of these results are then discussed relative to the
iterative forward-adjoint Monte Carlo method.

PRECEDING PAGE BLANK NOT FiLMEp  2-1



Since the computer test bed used to validate the iterative for-
ward-adjoint variance reduction technigues i1s a muitigroup Monte
Carlo code, Section 2.4 contains a discussion of the multigroup in-
tegral transport equations in both the forward and adjoint forms.

These equations are used to define the nroper relationships between

the forward and adjoint forms.

2.1 Boltzmann Transport Equation

The Boltzmann transport equation (sometimes called the linear
transport equation, Boltzmann equation, or transport equation) describes
the distribution of particles such as neuirons or gamma-rays in phase

space, P. Phase space will be represented by:

P = (x,Ei) = (X, E, 5 t) (2-1)
where x = spatial variable (e.g. x = (x,y,2) ) (vectoer)
E = directed energy variable (E = (E,&)) (vector)
E = energy variable (scalar)
o = direction or angular variable {w = 8,¢)){vector)
t = time variable (scalar)

The Boltzmann equation is usually written in the following form:

13 - - - = -
[‘-, é-té\.", E,t) + w- v¥x, E, t) + Z‘t(Eﬁ(x, Et)

= [ ZxE) % (x,B‘,t) {(E, &|E’, &) dE‘dw’

+ S%,E, t)] dxdE (2-2)
where:
dx = differential volume element (e. g. dxdydz). (scalar)
dE = differential energy variable (scalar)
do = differential angular variable (e.g. sin 8dedyp) (scalar)



dE =
&(x, E, t)dxd Edw =

Zi(;{y E) =
z:s(i, E) =

f(E,w|E’, @ )dEdw

S(x, E, t)dxdE

dEdw (scalar)
particle flux at time t in the differential

volume dx about x with energies in dE about

E and with directions in dw about w. The

units of & are particles (or photons)/c m?%/sec/
steradians/eV., and the energy E corresponds

to the speed v. (scalar)
macroscopic total c.-oss section in em™ ! at

position X and ener,v E. (scalar)
macroscopic scatteriag cross section in cm_1

at position x and energy E. (scalar)
the coixiitional probabkility of a partirle

scattering from an initial energy E’ and

direc.ion w’ into the energy interval dE about E

and into the -0iid angle dw about the direction w. (scalar)
the radiation at time t in the differential volume

dx a. it x with energies in dE about E and with
directions in dw and @ appearing from sources

other than scattering events (e.g. fission

neutrons, radioactive decay gamma-rays). (scalar)

The first term on the left side of the Boltzmann equation

represents the time rate of change of the radiation in the differential

phase cell, dxdE, a:time t. This time raie of change can be caused by

the following four occurrences:

1) Leakage [w * v®(X,E, t)JdxdE]: Net leakage of particles

with directions in dw about @ and with energies in dE

about E from the differential volume, dx about X, at

time t,
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2) Interactions [}_‘t(i, E)¥x, E, t)dxdE] : Any interaction of the
particles with the medium at time t in dx about x which

remcves the particle from cither dE abeut F, or du about .

3) Inscattering[( Il oG B B ) fF, 2B, 0)dE "dz ")dEda] :

A gain in radiation in dx about x at time t dve to any scatcer-
ing events which redirect the particles into dw about @ and
the energy into dE about E,

4) Sources [S(x, E,t)dxdE]: Particles born in dx about x ‘with

the proper energies and directions as defined above.

These four terms constitute the losses (leakage and interactions)
and gains (inscattering and sources) which determine the time rate cf
change. Thus, the Boltzmann equation is essentially a particle balan-e
equation, that is:

Change = Gains - Losses.

It should be noted that equation 2-2 is not the only form of the Boltzmann
equation. Often the balance is performed on the phase space particle
density instead of the particle flux. The independent energy variable E
can be replaced by the speed, v. Also, the inscattering term, which
includes any scattering event in which the number of particles is not
changed, can be replaced by a more general term. This term can include
production events such as fission in neutron transport and pair production
in gamma-ray transport. When the inscattering term is thus modified,
the source term must be modified corresponding.

The justification of the linear Boltzmann transport equation
as given in Equation 2-2 requires that the following assumptions be
made (alsu see Reference 9):

1) Statistical fluctuation are neglected

2-4
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2) Collision times are negligible

3) Particle correlations are neglected

4) The wave nature and spin of the particle is neglected
(except in the computation of the cross sections and
scattering kernel, f(E,w|E’, w’) )

N
—

Interactions between particles are negligible
6) The medium in which the particles is being transported
is not affected by the presence of the particles (i.e. the
cross sections and scattering kernel are assumed not to
depend functionally on ®(x, &, t) )
7) Cross sections are assumed irdependent of w
8) The scattering kernel, f(E,w|E’, w’), depends only on the
angle between w an¢ w’ (or onw * «‘) and on E'.
Assumptions 1) through 4) are required since the Boltzmann equation is
derived ir the continuous phase space P based on classical physics. This
means that the independent variables, X, E, w, and t, are assumed to be
continuous, not discrete (however, most transport methods use discrete
approximations for some or all of these variables). Assumptions 5) and
6) were necessary to keep the Boltzmann equation linear. Thus Equation
2-2 can be used for neutron, gamma-ray, and charged particle transport,
but would fail to adequately describe low energy X-ray transport because
of stimulated emission and the extreme temperature sensitivity of crcss
sections. Finally, assumptions 7) and 8} avoid the necessity of having
a preferred coordinate system. These assumptions would not be valid
for the Bragg (coherent) scattering of low energy neuirons by crystals.
The integral form of the transport equation can be derived
from the Boltzmann equation by defining a new quantity of interest, the
emergent particle density (Ref. 10). A derivation of the integral transport
equation in multigrour form has also been derived for the MORSE code
(Ref. 11) from the Boltzmann tcansport equation (Eq. 2-2). These
derivations will be disussed in Section 2.4, However, a derivation
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of the integral transport equation from more fundamental consider=z -

ticns is given below.

2,2 Integral Transport Lquation

The following discussion of the integral transport equation
is valid for both neutrons or gamma-rays, provided that the assump-
tions imposed on the linear Boltzmann equation are valid. Each par-
ticle will be described by its position in phase space (P), coasisting
of the spatial coordinates, X, energy, E, and direction of motion, o.
Only time independent cases will be considered, but addition of time
dependence is straightforward. Hence, P can be represented as
shown below:

P = (ir-E) = (iy E, ‘-:) . (2'3)

The motions of the particles will be described by three terms:
¢ Flux - & (P)
* Collision density - ¢(F)
¢ Density of particles leaving collisions (emergent particle
density) - yx (P).
Note that all three of these terms are functions of phase space, P, and
not just x or (x, E). As usual, the flux and collision density are related

by the total cross section, }_‘t(i, E), which is assumed to be independent
of w, 30 that

v (x,E,) = R(%,E) ¢ (x,Ew) . (2-4)

In order to derive the transport equatia, it is ccavenient to
cousider the number of collisioiis that a given particle has undergone.
Therefore, the following definitions are in order:

«d (P) - flux at P of particles that have undergone n - 1
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oy (P) -

Xn (P) -

Xo (P) -

C (E|E';

collisions (hence are entering their’ hth collision)
collision density at P of particles that have under-
gone n - 1 collisions {as for ¢n \P)]
density of particles at P which have jus: had
their nth collision
density of particles at P which are emitted from
the source {consider the source as the zeroth
collision)
x) aE - probability that a particle having a colli-
sion at the spatial point x and directed
energy E’ will emerge in dE about E
[C (E|E’; %) is called the collision kernel]

T (x|x’; E) dx - probability that a particle leaving a colli-

sion at X’ with directed snergy E will have
its next collision in dy. about x [T (x|x* E)

is called the transport kernel ].

From the above definition, the following relationship can be deduced:

> (@) -3 o (@ (2-5)
n=1
>
v = 2w, (P) (2-6)
@ o8
X(B) =2 x; (P) = x, (P) * 2 % (P) (2-7)
Xy (P) = S(P) (the source at P) (2-8'
Xo(%,E) = [ C(EIT%) ¥, (5B 4B n=1,2,... (2-9)
¢ EE) = [ TRIZE X (B k' n=0,1,2,... (2-10)
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Note that in Equations 2-5 and 2-6, the summation begins at n =1,
but in Equation 2-7, it begins at n = 0. The reason for this is that
d)n(P) and n(P) represent the particle immediately before entering a
collision, and since n = o denotes the source, ¢0(P) or dfo(P) are
physically meaningless.

The physical significance of the transport kernel can be seen
from the fact that T (x|x"; E) is just §(X, E) exp [R(X,E) * | x - k' |]
if the material property from x’ to x does not change and if the vector
frcm x’ {0 x is parallel to g where E = (E, .. If the vectors are not
parallel, then T {(x|%’; E) is identically zero. Thus the significance
of Equation 2-10 is that the ccllision density at P = (x, E) for particles
entering their (n+1) th collision is just the integral over all spatial points
of the density of particles leaving x’ with directed energy E times the
probability that the particle will reach x without having a collizion, The
physical significance of Equation 2-9 is very similar except that the particle
entering into the nth collision do«s not change spatial coordinates, but
changes its directior from &@'to @ and its energy from E' to E. Thus
yn(i, E)is just the integral of the collision density times the colligsion
kernel over all directions and all energies. The exact form of the collision
kernel is much more difficult to describe than the transport kernei since
it must include all posgible types of collisiun events, such as elastic and

inelastic scattering, absorptions, and fissions, whenever applicable.

By substituting Equation 2-9 into Equation 2-10, where X is
replaced by X', then y (X', E) can be eliminated:

voy®B = [ [ TGIRSE c(BIE; k) ¢ (', E") dE’ ax’

n=12...(2-11)
For n = o, we use the fact that XO(P) = S(P), so that
b &E = [ Tz E)S(x, E)ax'.
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Note that tte order in which ithe collision and transport kernels appear
is very imortant, s/'nce the collision density must first be transformed
by the collision kernel before the transport kernel zan operate on it.

Substitutii.g Equation 2-10 into Equation 2-9 for the (n+1)th collisicn yieldse:

X1 & B [CEIE R T E) x (¥, E)dx aff

n=012... (2-13)

In Equation 2-13, the order of the collision and transport kernels are
reversed to that Equation 2-i1, as one would expect from physical
considerations.

The relationships between ¢ (P) and X (P) can be derived by
summing Equation 2-% over n = 1,2,...,.

® o 4]

Sx @B -2 | cEE: D & E) (2-14)

n=1 0 n=1 n
or:

© oo

S X ®%ED -v,&E = [ SCEIERY RE) . (@19

n=o N n=1 n
By Equations 2-6, 2-7, and 2-8, Equation 2-15 can be written

X(P)=| CEIT'H¢(EE)aE + S(P) (2-16)
Likewise, by summing Equation 2-10 over n = 0,1,2,....

o o) O

2 ¥ (x,E) =_f > TElxBx &, E) dax’ (2-17)

fizo n+1 n=o n
or:

V&8 = | TR X & Byax . (2-18)
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Substituting Equation 2-18 into Equation 2-16 will clear Equation 2-16 of

V(x,E’) as foliows:

X (x,E) = [ j CEIE; » T x|z B)x (x'B")dx' dE'

+ S(x, F)

Likewise, X(x’. ¥) can be cleared from Equation 2-18 by substituting
Equation 2-16:

VERE) =[] TGREE) CEERIG,E) aEa

+ J T(x|x"; B) s(x’, B) dx’ .

Equation 2-20 can be written in the form:

¥(P) =_[ K(PIP)u(P) dP’" + QP)

where:
K(P|P) = T(xlx: E)C(EIE; %)

«p - | TGIR:E) sEYE) ok’

dp’ dE’ dx’ .

[}

Equation 2-19 and 2-21 are two forms of the integral trans-
ports equation. The equation most often simulated in forward Monte
Carlo calculations is 2-19. However, due to the fact that most people
have a better understanding of the collision density equation (2-31),

2-10
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this equation will be used in the next section to introduce the concept of the
adjoint to an integral equation, to define the term, adjoint, both mathematically
and in a physical sense, and to illustrate how the adjoint equation solution

can be used to improve the forward Monte Carlo estimate of an effect of

interest.

2.3 Monte Carlo Transport Games

Suppose one want to evaluate an effect of interest defined by:
<F> = [y (P) 1(P) P, (2-25)

where (P) is the collision density defined in Equation 2-17 and f(P) is a
collision density response or payoff function (sec Section 2.4.2 for a
discussion of the form of the response functions). Since the calculation of
the collision density by analyiical techniques is impossible except for very
simple problems, one must eriploy a numerical technique to evaluate or
estimate the effect of interest. The Monte Carlo simulation of Equation 2-17,

which ccnsists of estimating the expected value of {2-25) by a series of
random walks basgsed on Fquation 2-25 is one possible technique. This

procedure, described in detail in Section 3. 2, consists of picking
"particles' from the first collision source term, Q(P), (i.e., selecting
the spatial, energy, and directional parameters of the particle) and

then deter mining the subsequent history of the particle from the kernel,
K(PlP'). Certain restrictions are imposed due to the statistical nature
of this procedure, for example, the first collision source must be a
properly normalized probability function, either discrete or continuous.
Also, Q(P) and K (P| P') must nonnegative. Thus, a source normal:zation
factor is required for Q(P). Equation 2-23 indicates that the normali-
zation factor is not the magnitude of the natural source, S(P), for a

finite system. The distribution of the particle collisions (and any daughter
particles) so transported is proportional to the magnitude of the collision

density. Thus, the values of the response function, f(P), at each collision
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is an unbiased estimator of Equation 2-25. An estimate, F, of <F>
can be calculated for a finite number of particle histories, as shown below:
_ NS
F= w2 f(e) , (2-26)
j=1 n=1
where N is the number of histories generate and Cj is the number of
collision which the j-th particle and its daug..ters experience. It has been
assumed that each history terminates is a finite number of collisions (i.e.,

the process is subcritical and Cj is finite).

It is also possible to generate an unbiased estimator of < F> by
choosing from a different or altered source and kernel (say Q and i), if the
contribution from the response function at each colligsion is weighted by the
product of the ratics of the true to altered source and kernel distribution. This
weighting fartor after m collision, Vi which multiplies the response value
can be written as:

_QR) mKE P )

~ =2~
Qe "4Re P )

w
m

m
W (R [Py (2-27)

Equation Z-27 defines tne weighting functions which are used in Figure 2 to

=W (P)) -

illuzstrate an altered transport game. in order to define the game properly
the following requirements on our altered source distribution and kernel are
imposed:

Q(P)> 0

fé(P)aP =1

(2-28)

g
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= SUM

byl

STOP

( STARF)

SELECT k FROM py (P 1)
WHERE: P

PoPpt) = 1-PyPpy
PyPri) = LK (PIPy ) dP
(P q) = OIFKk > 2

SELECT P, FROM

K(PIP,1V/pq(P,, 1)
wn = w1 WalPolPrq)

Figure 2. An Altered Transpoct Game

1 -0
SUM = 0
1
— YES
NO
b=+
1
n=1
SELECT Py FROM Q (P)
wq = Wo(Pq)
-l
_¥
n=n+1

NO IS YES
k =07

F. = _w—"'_—"‘PM,_
I potPpa)

SUM = Sl.!M+l=j
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and

K(P|P')>0
(2-29)

—— N T m—

fﬁ(Plp')dP = p(P)=1

Equations 2-28 assure that the source term is a properly normalized
probability f nction. Equations 2-29 restrict the transport problem to one
in non-multiplying media, thus assuring the convergence of the transport
in a finite number of steps if there exists any medium which has a positive
absorption probability. This probability, po(P'), of entering a trapped
state at P' is just:

P(P) =1 - p(P"), (2-30)

which is the absorption probability, and it is assumed that each random walk
enters a trapped state.

As a further modification to the transport game, instead of
evaluating the response function, f(P'), at each collision event, score oniy
wuen P' is a trapped state for the particle. Such a change in the scoring
technique requires a change in the response function without changing the
expected value. This can be done easily by considering that the density of
trapped states or absorption event density, which will be denoted by ¢ a’

The absorption event density is related to the collision density by:

U(P) = py(P)¥(P) (2-31)

where po( P) is the absorption probability. Thus, the effect of interest in
Equation 2-25 could also have been calculated with the integrand,

v, (P) f(P)/po(P), and so the response function defined by f(P)/ po(P) is also
an unbiased estima'or of < F> when only those collision resulting in an
absorption contribute to the estimate of f Combining this new response
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function with our altered source and kernel produces:

N

o— B 1 - j 3

F = § ‘5‘1 w, {(P))/ b, (P)), (2-32)
]:

where v is the weighting function value calculatad at the absorption event,

waich occurred at ”; for the j-th particle. The flow diagram of this altered
game is depicted in Figure 2, All terms are defined in the corvention used
above, except the particle superseript, j, has been dropped for clarity
purposes. Now consider methods of reducing the variance of the estimate

of < F> by utilizing the adjoint equation.

2.3.1 The Adjoint Equation

Although the transport game discussed above was based on
altered probability distribution furctions, no mention was made of the way in
which these distribution functions are chosen (note that ﬁ( P] P')/ P, fP‘)

is the distrihution function, not Kio)py). Obviously, one wants to alter
the distribution functions in such a manner that scores (F) yield a

better value of F and o do this with smaller sample size (i.e., Smaller
N). Therefore, one seeks to choose "particles' from Q and points in
phase space that lead to higher expected contributions to F. This means
that one needs to have some sort of importarce function, say I(P), which
35 at least approximately proportional to the expected value of F from a
particle at P. The with I(P) we can define appropriate values of 6(P),

pD(P), and ‘IE(PIP’), so that the variance of our calculation is minimized,
where the variance is defined as

Ve g - ) (2-33)

To motivate our selection of the above values, consider the

following discussion of the equation which is adjoint to Equation 2-21.
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Since K(PIP") is the product of two real kernels, T(xjx : E) and
C(E|E”; x "), then K(PIP) is also a real kernel and its adoint is
just K¥PIP") = K(P'|P)

Therefore, any equation of the form

J(P)= fK(PIP) JP)aAP™  +(P), (2-34)

assuming that J(P) and {{P) are quadraticallv integrable, is an adjoint
nf Eq. 2-21. Defining the operators:

Kv(P)=f KPIPYW(P)dpP’ (2-35)

cand K*J(P) = [K(P|P) J(P)dr’ (2-26)

the following re.ationship is known to be true (Ref. 12):
b
fatrr- kucprar - (v @rk" aey ap - (2-37)
The proof is straightforward, reguiring only a reversui of the variable
of integration and rearrainging of terms inside the integrals. Multi-
plying Equation 2-21 by J(P) and integrating over P and then muiti-

plying Equation 2-34 by ¥ (P) and integrating over P, produces another
identity:

jwp) f(P)dP = j J(P)Q(P)dP (2-38)

But from Equation 2-25 it is obvious that:
<F> = f JP)Q(P)dP - (2-39)

Thus, another method for determining < F > is to perform a transport
game by Monte Carlo methods on the adjoint integral Equation (2-34)
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aau eslimate the uverage value of <F> by:

N .
< 1 \ (2-40)
F>x x I Q(Pr?.

This method is analogus to the on> described earlier in which Equations
2-21 and 2-26 were used.

One other mathematical characterisiic of the operaior, K, and

its adjoint, K*, is that since:

Ké(P) = [TG|% B)fC(E|E:R) ¥ (%, E') 4B dx, (2-41)

Then K* 3(P) - JCEIE:R [ TGRIxE) I’ E) ax dE. (2-42)

This is due to the fact that the adjoint of the product of two operators
is just the product of the adjoint to the operators taken in reverse order.
This relationship will be used in Section 2. 4.

Now consider the following physical identifications to those

terms which are in Equations 2- 25 through 2-39 and were not previously

identified. In Equation 2-25, the function f(P) shall be a response or
detector function which produces some contribution to the effect of in-
terest due to a particle that has a collision at I’ in phase sg. ce. The
effect of interest < F >, is a physical quantity such as the dose, heat-
ing rte, or fission per kilogram in Uranium-225. The distribution,
(P, is just the so-called '"first coliision source, or the distribution
of point at which particles leaving the real sourzes, defined by S(x, E:)
experiences their initial collision (see Equation 2-23). By choosing to
use the response function, f(P), in the adjoint equation (2-34), it was
possible to construct a new method of solving for the effect of interest.

Mathematically, any suitable (i. e., quadratically integrable) function
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could have been used instead of f(P) in Equation 2-34, but {(P) was
chosen because any other choice would not produce a second method

of estimating <F>.

The physical interpretation of our adjoint eq .tion, as given
by Goertzel and Kalos (Ref. 2), is that J(P) is preciszly the expected
score of a particle at P, Thus the right-hand side of Equation 2-34
consists of:

f(P) = the direct score at P of J(P) ,
fK(P'l P) J(P)dP = the score after one or more collision.

Thus, the function, J(P), represents the importance of particles at P in
determining < F >. J(P) is commonly called the adjoint function, and this
term will be used in this paper. The terminology is somewhat ambiguous
due to the fact that choosing another suitable function other than {(P) for
Equation 2-34 would have produced a different J(P), and certain authors

have objected to this terminology (Ref. 3). However, krowledgeanle workers
in the area of radiation transport understand the context where the term

adjoint is used in conjunction with J(P) and in reference to Equation 2-34.

2.3.2 'The Perfect Game

Since the adjoint function represents the importance of a particle,

and since » Monte Carlo calculation can be improved by sampling from the
important parts of the distribution function (i. e., relative to some effect of
intarest), the question of how the adjoint function can be used to enhance our
Monte Carle transport game naturally occurs. To elucidate that question,
consider the fcllowing choices for the parameters in our altered transpcret
game:

£(P) . 1(P) (2-43)
S x@'|P) 3(p) dP' + £(P)  J(P)

p,(P) =
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fK(P'lp) J(P*) dF’

pl(P) =
fK(P'l'P) J(P’)dP + f(P)
(e |P) J(P) P
J
= -44
“3(5) (2-44)
ap) = QP) J(P) . P} J(P) (7-45)
fap) ¥p) dp’ <F >
R(P|P") = 2| BT XE)
S K(@*|P") 3P") dP* + £(P’)
_ K(p{p") J(P) _46
= IB7Y (2-46)
Applying these terms to the transport garae illustrated in Figure 2, the
following parameters can be calculated from the equation whose numk ~r
is given on the left-hand side:
@20 wp) - $B) . S5, (2-47
° QeE"
2-28) w.(P|p’) - KPJPY) g’ |
(2-28) (PIPY) RpiP) ~ NP (2-4€
As shown in Figure 2, the weight of the transported particle
is given by
Vo = Wpa W(BIP ) (2-49)
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Substituting Equation 2-48 into Equation 2-49 yields

JP )
W o= w n-1 ,
n n-1 Jl,ﬁﬁ;
or
Wn J(Pn) = Wn_l J(Pn-l) hd (2-50)
Then it follows that
WnJ(Pn) = w,J(Py) . (2-51)

From Figure 2, W, is given by

Wy F wo(Pl) (2-52)
Substituting Equations 2-47 and 2-52 into Equation 2-51 yields
Wn J(Pﬂ) = WO(P].) J(Pl) = <> . (2-53)

Now returning to the transport game, if the particle entered a trapped
state of the (n + 1)th collision, then the score, F, would be

F = w f(P)/p, (P) . (2-54)

But from Equation 2-43, J{P) can be represented by

ap) - LB (2-55)
P, (P)
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Hence, substituting Equation 2 -55 into Equation 2-54 yields

F-w JP: . (2-586)

But from Equation 2-%3, v J(P)q) = <F>, hence
F = <F> . (2-57)

In other words, the exact answer can be obtained from the
result of the transport game with only one particle. All that is required
is that the particle he transported until it reaches a trapped state. The
variance then is obviously zero, and thus. the game played was a1 perfect
game.

However, consider the assumption made to get the values of
po(p),’ p, (P), QP), and K(P]P’), that is, that J(P) is known. It was also
assumed that <F>was essentially known in Equation 2-45, because if J(P) is
known, then since Q() is also kiown or can be easily calculateq, < F >
can be found by integrating Equation 2-25 by either analytical ur numerical
technique (i.e., Monte Carlo is no longer needed), Obviously, if one
desires to solve for < F> by forward Monte Carlo, then J(P; will proo-
ably not be known. One possibility is tc replace J(P) by somc approxi-
mate importance function, I(P). Then the altered probability distribu-

tior functionz can be found by

£(P)
fK(P’IP) (P dP’ + {(P)

p,(P) (2-58)

1]

py(® =1 - p(P) (2-59)
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QP) = I(P) QP) (2-60)
/[ up") ap’) ap*

Rrp|p) - X(P|P') KP)
1(P')

. (2-61)

Another possibility to compuie the altered probability distribu-
tion functions is to solve for J(P) and ¥(P) iteratively, using the values of
one to define better distrituiion runctions for the other, since if ¥(P) were
known exactly, a perfect game could also be constructed for the adjoint
Monte Carlo solution. This procedure is called the iterative forward-adjoint
Monte Carlo method, and the theoretical validity of this method has been
demonstrated above.,

2.3.3 Importance and Bias Sampling

In the previous subsection, the concept of an importance function
was introduced, including the use of that importance function to alter a
phy .ically derived distribution functicn with the new distribution being
sampled to construct the history of our particles. Altering the distri-
butions functions, that is, the kernel, K( Pl P’'), and the first collided
source, Q(P), lead to much greater efficiency of our calculation for the
given transport game. This process, known as importance sampling, was
discussed using the familiar quantity, ¥(P), the collision density. For the
remainder of this discussion of iraportance sampling, the emerzZent particle
density, X(P), will be the quantity of interest. Although this quantity is
used less frequently in nuclear engineering, it is much easier to work
with in Monte Carlo. Thus, the integral emergent particle density equation,
as givein by Equation 2-19, can be written:
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X(P) = S(P) + fc'r(PIP') x(P') dP' (2-62)

where
CT(P|P") = CEIE",; X) T&IX; E) . (2-63)

Note that the new kernel, CT(P|F’) is not the same as the kernel, K{PIP'),
applied before the collision kernel, a process which is reversed in K(P|P').
A given effect of interest (A), such as energy deposition, biological dos~ or
particle flux, can be calculated by:

defined by Equation 3-20. CT(P|P') requires that the transport kerncl bhe

= fe@rximap (2-64)

where g(P) is the response or payoff function for particles emerging from
a collision at P in phase space.

Now consider an arbitrary, but positive, function, I(P), which
shall be called an importance function. Multiplying Equation 2-62 by I(P)/N,

where N is the normalization factor of the altered source, given by
[1(p) S(P) d(P), yields:

XP) = 8p) + [ P CT(P|P)ap’ | (2-85)

where:
X(P) = x(P)P)/N , (2-66)
p) = s(P) (PN , (2-87)
CT(P|P’) = CT(P|P’) I(P)/NP’) . (2-68)

Hence, X can be evaluated by:
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» = [ &) ¥Prap (2-69)

with:
g(P) = N-g(®)/1(P) . (2-70)

It does not appear that any improvement has been made by
calculating A by Equation 2-69 than by Equation 2-64, since only a change
in notation has occurred. But in the previous section, the use of the adjoint
as the importance function resulted in a game with zero variance for one
history. The. dore, it seems reasonabie that a choice of I(P) that approxi-
mates J{P) should lead to reduced variance. Many studies support this con-~
clusion (see References 1-17),

An alternate technique which is similar but is based more on
physical intuition is that of bias sampling. In bias sampling, an altered
distritution, such as the source distribution, S'(P), or the kernel CT'(P|P")
is used on the basis of an understanding of the physics of the problem and
how it relates to the mathematical procedure, In the Monte Carlo game, a
source particle is selected from S'(P) and then weighted by the ratio of S(P) to
S'(P). Transport and collision parameters are based on the altered kernel
CT'(P|P'). Letting X'(P) be the weight density of particles emerging from
collisions and sources at P, then,

x'(P) = S'(P) * W _(P) + f x(P") CT' (P|P’) - W(P|P’)dP’

@-11
where
w (P) = S(P/S'(P) , (2-72)
and
w(PIP') = CcT(P|P')/CT' (PIP') . (2-73)
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Substitution of Equation 2-72 and 2-73 into 2-71 yields:
N'(P) - S(P) + [X'(P)CT(PIPY) 4P (°-74)

which proves that X(P) and x'(1, are id2ntical, hence a solution of Equation
2-T1 is also a solution of 2-62, The unly restrictions on our altered dis-
tributions is that all mathematical expressions must be defined over the

entire phase space, with the indeterminate, g , defined as 0,

The techniques which have been developed ir: this research employ
aspects of both importance and bias sampling. This is done by using the
importance funclion to alter the source energy and angular distribution func-
tions, the transport kernel, and the coilision kernel, then correcting the
weight of the particles at each step as i1n bias sampling. For the forward
Monte Carlo claculation, this importance ifunction is based on both the
adjoint function and input biasing parameters which allows the use of the
researchers physical intuition to enhance the variance reduction schemes,
The equivalent technique is available for the adjoint mode calculation., Thus,
the advantages of both importance and biasing are included in the tecimiques
developed. These techniques are discussed in detail in Sections 3 through 5.

2.4 Multigroup Integral Transport Equations

The computer code from which the test bed for determining
the validity of the iterative forward-adjoints variance reduction tech-
niques was derived is MORSE (Ref. 11,13,14). MORSE is a multigroup
Monte Carlo transport code, which means that multigroup cross section
are used. Because of the strong interaction which vccurs between the
forward and adjoint calculations in the variance reduction techniques,
an understanding of the multigroup integral equations which are be-
ing solved by Monte Carlo is essential. In this section, these equations
are discussed in considerable detail. The beginning point for this dis-
cussion will be Equation 2-2, the Boltzmann transport Equation. The
primary emphasis will be placed on those areas where this research

has deviated from the efforts of other researchers such as Irving in
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Reierence 10, Straker, et.al., in Reference 6, and Solomito in Reference
15 and how the quantities used in the importance function are derived.
For a complete derivation of these equations, Appendix A of Refereuce
6 should b2 consulted, although certain exceptions will be noted in this

section and Appendix D to that werk.

Tlie time dependence of radiation transport is handled very
straightforward in Monte Carlo calculations. Each particle is given an
initial age at the source and the age at some subsequent time is calcu-
lated by a knowledge oi the particle's speed and distance traveled.
Therefore, consider the time-independent integro-differential form of

the Boltzmann transport equation:

o .Vo(x,E, &) + }lt(i,E)¢(i,E, w) =S (x,E, w)
*J-J. 2 (LEDNS (x,E,0) {(E,0 | E0) dE' da’ (2-175)

where all terms are the same as defined in Section 2-1, except for
the assumption of steady state conditions. The multigroup form of
Equation 2-75 is obtained by . tegrating over pre-selected energy
intervals, .\Eg, where:

AE = E - E _,
g g g+1

the energy width of the gth group with the highest energy group being
defined 2s group 1. Obviously, the sum over all groups, say from

1 to N, must be identical to the energy from 0 +» E % The resulting
equaticn is:

. Vo (X,0) + 3F$ X, 3) = S (x,0)

+ZS zi(i) Gx o) 1 B8 (5laY) do, (2-76)
T
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where:

4

- B
pe0) < TORED) aE, (2-77)

Eg+ 1

ALl

the multigroup {cr eroup) angular flux for group g;
E
- - & _ .
Sg(x,w) =I S(x,E,w) dE, (2-78)
Eg+]

= the group source for group g;

Eg

3P - Bt

* energy-averaged total cross section for group ¢:

(zg (%) is defined similarly),

and
L s
, J " HE, o | E,6) ¢ (% E,0)dEdE
(B 5) s gl gl . (2-80)
J B’ (3, 0) dE’
E,.
g +1

= group g'to group y transfer probability.

In Equation 2-76, the summation from g' allows both upscattering into higher
energy groups and downscattering in lower energy groups, although only
downscattering is important for the problems being considered.
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The right-hand side of Equation 2-76 is just the expected
number of particles leaving souarce or colligsion events (per unit volume
solid angle and time) about ¥ and {} whose energies lie in energy r;roup
g. This is the definition of the group emergent particle density, "g (X,w),
which yields the following identity:

- - - - . ‘. ., BB
xg(x, w) = Sg(x,m) +%,f2§(x)¢g,(X,m')f (@}a) do” (2-81)

2.4.1 Forward Multigroup Integral Equations

Transformation of Equation 2-76 into iniegral focrm is
accomplished by expressing the leakage term in terms of a snatial
variable, R (as illustrated in Figure 3):

- -

x¥*=x ~Rw (2-82)

where x is a fixed point in space and X’ is arbitrary. Taking the
total derivative of ¢ (x,w) with respect to R yields:

d ¢ (s:y _d%g dx | d¢g dy | d¢, dz
) - ® T R W@

= - cosa dég -cosﬁif_g_-cos)’iﬁg_,
dx dy dz

where a, (3, and y are the angles between dr (which is along w )
and the x, y and z axis, respectively. Thus:

d ,0) = - @ -\ (X,@) . 2-83)
‘a—R" ¢g (X,m) @ \¢g(x ’w) (

Substituting the above equation and (2-81) into Equation (2-76) for
the point, x°, yiclds:

- - g - - - -
TR + I ()8 =X (K0, (2-84)
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Figure 3. Geome:ry for Leakage Term
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R
T - - .
¥ G-rOaR
Introducting the integrating factor, e 5’ 't (x-Rw) ,into (2-84}

then multiplying by dR and integrating from R=0 to R= o results

in:

® Rg - = .
- _g}:t (x - Rw)dR - ..
¢g(x,w) = e Xg(x -Rw, w) dR, (2—85)
0
R
. m.b[ s (x-R'G)aRy |
or ¢g(x’w) = e t S (X'R(l)yw)
g
(o]

% _,f 25 (% - Ra) b (R~ Raiy ) A )dt.:"} dR. (2-86)
Eqguation 2-36 is called the multigroup integral flux equation or
the integral flux density equation, Equation 2-85, and hence
(2-86), can be generalized by performing o.ur integration over
all spatial points, x*, by using the propertics of the Dirac delta
function (see Reference 16) and the differential volume element
dx’ about the point x*:

2

R” sing'd¢’dy’ dR - r?

dx’ do'dR, (2-87)

where R x - x|

thus:

x
‘Pg(i":’) =Ie :Jzzg (x'')ds xg(i” o) M’—l-) dx’, (2-88)

RS
where the angular direction vector from any arbitrary x‘to the fixed
point x is defined as «’(note the change in definition) and the integral
from X’to X'is along the straight line path, s, which contains the spatial

- R
points, x7 This integral will also be represented by IZF (%-R'3") dR’.
0

From Equaticns 2-88 and 2-61, a multigroup integral
emergent particle density ecuation can be ~onstructed in a form

2nalogous to Equation 2-19:
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25 X) 1

X (X m)- S ()_( :u) +2‘5 zg.( ) g‘g((;l(:)') 5(‘;..0'),,_ 12
R

ztg(x)e f “ (X R'w v\dR' g(_x-,(:")divck:,v (2-89)

where d&' 1is defined as R2 dw''dR (see Figure 4). The group dependent
kernels are just:

’ - - g <
cE B (olanx) = -E-i(-’i)fg“g’(;aa;; (2-90)

and

(G %0 - Slo.w -1) s8(%) e
R t

However, because of the difficulty in maintaining a consisient
notation set due to the change of variables of integration for
different integral equations (8uch as the flux density and the
emergent particle density equation) subsequent equations will
not use the kernel notation unless that meaning is completely
unambiguous. Thus, Equation 2-89 will be written:

w)-S( w 2y  (xwi«)
& e Eg;c‘o[ zE ®
J+

f}‘_ (x R’ )dR e,
® o Xg{x-Rw'w’)ducL'? , (2-92)

|A
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Figure 4. Integral Transport Equation Geometry +-78-808
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with the scattering cross section aad denoted by the term,
578 z:ala

It is also possible to write the multigroup collision density
equation, as shown below. Defining the multigroup collision density by:

v (%) = 2P X (&), (2-93)
then from Equation 2-85, and using Figure 4,
R
C(x-R'e’ '
w 3%(x-Ro’) dR
x,o) =] 38 (x ‘J S (x-Ra&) dR
lllg(X,m) le (x) e g g(x o’)
(0 0] fR gq gv
g - - ~ 2 - (i'&."la") = " =gt
g (3 -JX CRT! ' R X, ¢ (X, " Yo' "dR .
+fs8(x)e /%t (X -R'G")AR' D — (X,
6/‘“1 o g‘f Zf(x') g

(2-94)

The first term on the right-hand side is the first collision source in the
g-th energy group and the second term is the group form of the K(P|P")
kernei, where P is defined as (x,E’) and P’ is (x',E". The similarity
to equation 2-20 is obvious. The u3e of the double prime on the angular
variable is necessary to maintain the geometry notation shown in Figure
4. However, should the vector entering a collision at x from x' be rede-
fined as @, then w” can be redefined as w , and the resulting equation is
then in a more standard form.

2.4.2 The Elfect of Interest

In Section 2. 8, the snlution of Equation 2-25, < F >, could be
estimated by performing a Monte Carlo transphrt game based on the
collision density, ¥ (P), < F > was identified as the effect of interest.
The effects of interest is some quantity such 28 ine Henderson tissue
dose at a detector, the total energy deposited in a given volume, or the
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enely, flux through a bounded surface. Equation 2-25 shows one way

in which the effect of interest can be calculated. The response function,
f(P), is the payoff per unit collision density at P. In multigroup notation,
the reeponse function shall be denoted by Ré’(i,b), which is defined as
the response function of the effect of interest due to the particle collision
density at x and inw for group g.

Due to the simple relationship between the flux and the collision
density (Equation 2 -4), the payoff functicn jor a unit angular flux at x in o
for group g, ¢>g(i,¢:;), is just:

RP(X0) =IfBRYR ). (2-95°

The response function is most often given for the unit angular flux,

since it is usually normalized to the number of particles per centi-
meter squared (e.g. rad/ (neutron cmz). For general use, thLe response
function can be a function of position, energy, angular direction and time.
However, the response function is usually irdependent of the particle
direction and age, with the response being defined as zero everywhere
except at the detector, which could be a point, surface nr volume. The
effect of interest for group g can be exgressed as:

([ R 5oe (Goas s
s R Gare G50 ok, (2-96)

with the condition placed on lg that the total efiect of interest, ),
is the sum of the group effects of interest.

Group response functions have been defined which pro-
duce the group effect of interest when integrated over the spatial
and angular (and time, if desired) variables for both the collision
density and flux. A group response function, R: (X,w), can altso
be defined so that:
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- r &xa X,0) 0 0dX . (2-97)
)\g—fj Rg(x,o)xg(x, ) d wdx

This is accomplished by requiring that the group eifect of interest
due to the emergeni particle density be the same as the effect of
interest which results from the flux caused by xg(i,ib). Since the
group flux caused by xg(i,a) at some point a distance of R from

x along w is given by:

Xg(i, w)> (2-98)

m - - -
RX(%,3) X, (%,0) = £R§(§+R;,a) ¢ (% +Ra, o) dR

R
@ g - _,-
- _Izt(x+Ru)dR' b= - - =\
€ o Rg (xtR w, & ) xg(x’ w) dR,
0 (2-99)

from which the definition of Rgx (x,w) is shown to ve:

o R
R;(i,t.n) = je({ Te(%+ R )R Rg(im;‘;.)dn. (2-100)
0

It is not likely that Rgx (x, ©) will be nsed directly to calculate Ag,
but it will be raquired in the next section for defining the multi-
group integral transport equation which is adjoint to Equation 2-92.
Alter nate methods of calculating the total effect of interest (A or

< F >) will aiso be discussed.
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2. 4.3 Adjoint Multigroup Integral Equiations

In this section, several forms of the multigroup transport
equation have been introduced, including the integro-differential
Boltzmann equation and the integral collision density, emergent par-
ticle density and flux equations. Likewise, several forms of the ad-
joint multigroup equation exists, each determining a different adjoint
function even when the relationship between the forward and adjoint

""'source'' term is based on the effect of interest calculation (i.e. A =

I\D (P) f (P)dP =I S(P) J (P)dP), Any of these forms can be used

to calculate the required importance function, but the forms that
should be used is that adjoint integral equation which is simulated

in the Monte Carlo random walk procedure in our test bed in the

same manner as the emergent particle deasity equation. ii is some-
what surprising that the desired adjoint equation is not the adjoint to
the eniergent particle density equation. For that reason, this sub-
section contains a discussion of different adjoint equations and the
relaticnship between these equations which determine the importance
function. Due to the adequate descrip.ions of the derivation of most of
these adjoint equations in References 10 and 11, a full derivation of all
equations will be omitted. However, errors, other than typographical,
ir. Reference 11 will be discussed and correctzd in the following cevelop-
ment or in Appendix D.

One method of defining an adjoint equation is to derive the
adjoint to the intergro-differential Boltzmann equation (2-75) by the re-

quirement that:

’
J tP*(P) L ¢ (P)dP = I ¢ (P)L‘¢*(P) dp, (2-101)

*
where ® is usually called the adjoint flux and L is the Boltzmann
transport operator, defined by:
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Lé(P) = -@ VP (X E)- ¥ (x, E)P(x, E)
+J j g (X,E)f(E, ol E', o) ¢ (x,EVdE’ do’,

The resulting adjoint operator, L* , differs trom the forward
operator in two ways:

1) The leakage term= have opposite signs,

2) The transfer probability in the inscattering terms
have reversed the initial and final direction {w)
ard energy (E) variables.

L*¢*(P) = & .Vé*(%, E) - 5,(X, E) & (x,B)

[ [ £, &EV(E,|E, 2)6(:,E) dE do.

Defining S* (P) as the adjoint source term, the multigroup form of
the adjoint equation,

L ¢*mP) -s*(p) -0,

can be determined as was done for Equation 2-75. If the adjoirt
flux, ¢ "(P), is used to define the multigroup cross sections and
transfer probability, then the cross sections for the adjoint Monte
Carlo calculations will probably differ from these for the forward
calculation. However, if the same multigroup cross sections are
used and only the transfer probability matrix is transposed, then
the multigroup form of Equation 2-104 is identical to the adjoint
form of Equation 2-76:

- 6. ve (D) I 09 (R,E) = 85 (,0)

" _'- ¥ e e,
+}:S };g g(x:m‘ )¢E(X.w')dw.
g

Remember that the choice of S; (X, @) will determine the solution
of ¢; (x,w0).
2-3"
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Using the same procedure as applied to Equaticn 2-76,
but with X' = x+Rw and an integrating factor of:

e;fr;tg(i’ R'w)dR’,

the following integral equation is derived:

¢gx,u)- j eo t(x+Rw,w)dR Sg(i+R;,¢:J)dR
0
@ R

‘_g- 4 - Il
zf(i+na,)e;)f~t<hﬁw>dﬂ

+
o‘“

Z J‘ TR RS 1D) 8 (RRO, ) AT AR,
Zg (x +Rw) (2-20%)

The above equation is adjoint to Equation 2-92, the emergent particle
density equation, since the second term on the right hand side is just
the adjoint (or transpose in th's case) of the corresponding term above.
The above equatior. 'vas derived from the integro-differential equation
and is not the adjoint of the integral flux a1uation (2-86). Because of
the ambiguity of termxnology introduced by ¢> (x,m) Equation 2-106
will be denoted by X (x,w) That is:

* _ _ * _ .
Xg (Kw) = ¢ (x,0) . (2-10%)
At this time, the source or first term of Equation 2-108 ia unspeci-
fied (which means that X g (x,w) is unspecified). As discussed in
Section 2. 3.1, the choice of the source term should be the opne

which allows the effect of interest to be calculated by either the
forward or adjoint function. This means that since:

-3 AR A CRATHS
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b 3
=y ” X (x,w) S (x,0)dodx , (2-108)
T ® e
then the adjoirt source term is:

oo - m_IRg_ oot e
Rg (x,w) =_[ e it (x*R'w)dR Sg(x+R¢L,Z))dR. (2-109)
0

Equation 2-106, which is called the integral poini value equation,
can be written:

R
m - g -~ - ¢
X (%,2) = RX (%,0) +j >8(x+Ra)e .[Et (x+R'w) dR
g g gt 0

RL-
— Ts
-}?I

g(;HR; LW w)

:f(i—:—na)

xg‘. (;+Rw,o)MdodR.  (2-110)

Comparison of Equation 2-109 with Equation 2-109 provides the
identification of the adjoint source term, S; (x,w), which was

first used in multi-group integro-differential adjoint equation (2-105):
s (,5) = n‘é’ (%, @), (2-111)
the angular flux response function. It is this function that should
be input as the adjoint source intoc computer programs such as
ANISN (Ref. 17) and DOT (Ref  12) which solve the multigroup ad-
joint int<giu-differential equations using finite difference techniques.

Equation 2-110 represents one form of the multigroup
adjoint integral transport equation. While this form is solvable
by Monte Carlo methods, it is not solvable by the same techniques
used in the test bed to solve the forward emergent particle density
equation (2-92). This is abvious because the first step after the
source particle selection is the collision kernel step, whereas that
step in simulation of xg(i, @) is the transport step. Therefore,
consider the adjoint form of the collision density equation (2-94):
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X: ol

3§ (x)

‘g(x+Rw')e Izt (X+Fw)dR'¢ (X +R&, OV dR 45",

This equation is the multigroup form of the adjoiiz eguation for
J(P) derived in Section 2. 3.1. It is also called the value, im-
portance, and integral event-value equati~z. The designation in
this paper will be the value equation, because the equation can be
derived by defining w;(i,o.) ) to be the value cf an event or collision
at x to the effect of interest for a particle in group g entering a
collision with direction o . R‘: is the immediate payoff and the
second term rcpresents ail subsequents contributions. It can also

be shown that )(g' and ‘b; ave related by:
R

© Bz ‘- .
x;(i’é) =J}.%(i +Rw) e-g Lt (x+ R'w)dR

‘1"(:’:+ Ra, )dR.

Thus if lll is the value for a particle upon entering a collision,
then the above equation indicates that ><g is the value for a particle
leaving a collision. That this is the case is also indicated by the
fact that the source term in Equation 2-110 is Ré, the response
function due to the emergent particle density.

Inspection of value equation indicates that it is in the
same form as the emergent particle density equation ( xg(i,&)),
which means that it may be simulated by the same Monte Carlo
methods. However, implementation of the simulation for the value
equation soon experiences difficulties. After selection of an "ad-
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joint particle" for x, o’,and g’ from P'é',‘(i’,&..'), the adjoint particle
is not only traveling in a direction opposite to the direction « (i. e.

from x + R & to X), but the trunsport kernel 1s not normalized, since
(with x+Ro'=x"):

R, R .
-‘-f(?u RE) e_g E% (x+ Rw)dR 22% (i’)e'gzg(i’-n R
and our object is to pick a point X = X' - Rw'. This obstacle can
be overcome by choosing from a properly normalized kernel and
correcting the weight of the adjoint particle by Etg (x', o)/ th' (x, w).
However, this calculation is not required in the simulation of Xg(i, w),
so .t would be better to avoid the correction in the adjcint equation
simulation. In addition, implementation of the collision kernel reveals
that it is also unnormalized, and that the corrections required are
even more extensive and time-consuming. Our problem with the
transport kernel can be circumvented by defining a new function which
is the product cf d/; and 3%, since the introduction of ztg(i)
produces a properly normalized transport kernel.

The new function will be denoted by Gg (x,@) and will be

defined by:
- g, - * .
G yw) =% U -
g(x ) ¢ (%) g(x,w) (2-114)
*

Substituting the equation for dlg (x,w) into the above equation yields:
g€ _,
8 (xv

W <)

G (%% = sp®R @a) + 3| ¥ 2
4 4 g t 2g (%)
t

@ Rg._
f e‘g.)-t‘x*ﬁ“’)d“zg(hna) ¢;.(i+na',é-)anaz',
0

LYEE A
114
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which can be written as:

\g»g{i.&ﬂ—)
-~ — \ Ry lw
G(Xw)=R?(x w) + S — _
S

03]

2% &) e“é[ s#(x . R&) R G, + R&', &' dR !
Equahon 2 05 was used to define Rq)(x w) and the unity ratio, 21
X, (x )/ "-t (x) was distributed m the second term to normalize the
transport kernel. The above equation also allows the adjoint particles

to travei in a direction opposite to their velocity vector. To overcome

thic somewhat confusing convention, definc the adjunction, an "ad-

joint particle” that obeys Equation 2-116, except that the directions

have all been reversed. This allows the adiuncton to travel in the

saim€ sense as the velocity vectors, but also requires special attention

in the interpretation of the results of this adjoint calculation, since all
results will be in the opposite sense to the value calculated by Equation
2-112, The new equation defined is:

¥ B a @)
G (%, &)= RY (%, &) « 2 [ Z2——
g Zf (x)
© R
LI - g' Y - "‘v v— Y - "" "" bord
f}-tg (%) e !zt (x - R'w")dR Gg'(x Re',w ) da
o (2-117)

Equation 2-117 will be called the integrral emergent adjuncton
density equation, which is in agreement with Appendix A of Reference 11.
However, the approach taken here is different from that taken in Reference
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11, an approach which is patterned after Irving (Rei. 10). The deriva-
tion of the emergent adjuncton density equation contained in Reference il
has several errors, mostly in terminology (e. g. noc distinction is made
between Gg and Gg). Appendix T contaias a corrected derivation of the
multigroup emergent adjuncton density equation which 15 consistent with
the definition of Gg (x,») in Reference 11. TLe result ir Reference 11 is
similar to Equation 2-117, but it requires considerably more effort than is
required by the derivation of Gg(i,{];) based on its relationship to the value
equation. Comparison of the emergent adjunction density equation (2-117) and
the emeregent parcicle density equation {2-92) shows that the Monte Carlo
method used to simulate the emergent particle density equation can be
used to simulate the emergent adjuncton density equation. Only the source
functions, Sg(i.t_u) and ﬁ‘g (x,w), and the scattering kernels are different.

A description of this simulation will be given in the uext section.

2.4.4. Effect oi Interest and Importance i“unction Estimation

Now that the integral transport equation, both forward and
adjoint, which will be simulated kave been chosen, two other questions
must be considered:

1) How will the effect of interest be calculated?

2) What functions will be used in determining the impor -
tance function?

Most of the necessary information for considering these two questions

have already been developed in this section, and only need to be sum-
merized at this time.

Consider first the relationship which was required be-
tween the forward inteyral equation and its adjoint, that is, the
adjoint function must not only meet the mathematical requirement.
but also that the adjoint source term must be the response function
used to generate the effect of interest in the forward mode. This
uniquely related the following sets of equations:

. collision density (dfg) - value (‘U;) .
. emergent particle density (xg) - point.-value (xg) or ad-
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joint flux (dJ;)
. flux density (ng) - emergent adjuncton density (Gg or
G)
g
Since the most natural method of calrulating the effect

of interest, A, is:
- Aiee e e e
A Z_jj R (x,0) ¢ (X,0)dwdx, (2-118)
g g g

and the source term for fr"g (x,w) from Equation 2-86 is:

R

® g _ - .
j e’ng (x -Ro)dR sg(g_Ra,, w)dR,
0

then the effect of interest can also be expressed as:

@ e -
SRR DR 6 r e
g 0

. Eg(i, w) dwdx . (2-119)

Ohviouslv, the above expression is not a verv desirahle method

to calculate A. But since the emergent adjuncton density equation

is being si.nulated, and the flux density is not, won't it be necessary
to use Equation 2-119, instead of 2-1187 The answer is fortunatcly
ne, since in the forward Monte Carle random walk, each of the quan-
tities, \bg, )(g and ‘bg’ can be estimated if desired. Likewise, al-
though the emergent adjuncton density, G'g, is being simulated, it
is also possibie to estimate X; and \U;. While this procedure will
be discussed in the next section, equations such as 2-85, which re-
lates ¢»g to X'g, and 2-114, relating Gg and \b;, provide an insight in-

to how this is accomplished. Therefore, there is no restriction as
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to what quantitites, either forward or adjoint, can be used in the

effect of interest extimation.

The forward estimation of A\ will probably be with the an-
gular fiux, ¢g(i,5)), in the Monte Carlo approximation of Equation
2-118, because the recponse function Rg is the one most often
use ir radiation transport calculations, For the adjoint estimation
of A, the acjoint response function most likely to be available is
the source function, S_ (X, ®). This means that the adjoint flux, d> (x, @)
or x (x, w), will be determined in the G (t, «) simulation and
the contnbutlon to efiect of interest calculated This estimation is
based on the fact that:

a3

N — - L ‘ Ll - - -
A -gZ”sg (5,0) %, (%,2) &% 4. (2-120)

It should be recognized that while the group effect of in-
terest, Ag or A; . can be defined for each group in both the forward
and adjoint calculation, these values are not necessarily equivalent,
contrary to the many egustions in Reference 11 which state that they
are. This fact cr = be demonstrated by considering a two group
protlem, wher motroas are emitted in the first or fast group
and where the dewector has a non-zero response only for neutrons in
the second or thermal group. Assuming a infinite, non-absorbing sys-
tem. then the forward and adjoint flux will be non-zero for both groups,
but the adjoint wource (or forward response) is zero of the fust group.
If the thermal group effect of interest is evaluated by the forward flux,
then:

= H R?(i@)% (X, v )dwdx >0,

since both R$ and ‘PT are positive definite values, However, if the
thermal group effect of interest is evaluated by the adjoint flux, then
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* e
.\T :J‘j. S'i"“x”"") (b,l, (x . w)dodx =0,

since the thermal source, S, is identically zero. Therefore,A
*

T
terest cannot be compared directly.

T

is not equal to A ard the forward and adjoint group effect of in-

Selection of the functions to be used for determining the
importance is a much more different problem than that of the effect
of interest calculation. However, it was shown in Section 2. 3. 2 that
the adjoint or value function, J(P), could produce a perfect game for
the specified transport game which simulated the collision density
equation. This result was investigated even more thoroughly and
extended to other transport game and biasing schemes in Reference
3. Tuc authors concluded that the value function is always a good
choice for importance function biasing of the collision density equa-
tion, Therefore, it was decided on the basis of the conclusions
above and because the effect of interest estimation required the
same functions that the following functions would be used in the
importance function:

Forward: The adjoint flux, X; (x,w), for biasing the emer-

gent particle density equation simulation.

Adjoint: The angular flux, <Pg (x,o), for biasing the emer-

gent adjunction density equation simulation,
This procedure is illustrated by the diagram below:

Moce: Equation Tmportaice Function
Simulst- "’ Estimated

Forward: Xg (x, w) = <pg (x,0)

Adjoint: Gg(i,c-u) —_ lxg’"(i,a)

The arrow from the "Importance Function Estimated’ column to the
"Equation Simulated'' column indicates the equation in which the im-
portance functior is used. The exaci form of the importance functions
will be discussed in Section 4.
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3. THE IFAM TEST BED

The principal objective of this research is to develop and evaluate
variance reduction techniques which utilize the iterative forward-
adjoint Monte Carlo method. A necessary tool for accomplishing this
objective is a computer program which utilizes these techniques while
performing the Monte Carlo simulation of the ii .egral transport equations,
No such computer program existed, so one had to be developed, coded
and validated as part of this research effort. Because this program
must be capable of accepting several different importance and biasing
functicns, it was decided that the proper approach would be to develop
a computer software test bed. The test bed must handle, for both
forward and adjoint modes, all input and output of data, cross section
manipulations, tracking of particles in complex geomeiries, and
provide the framework for the Monte Carlo random walk, importance
function estimation, and effect of interest calculations. A test bed
is distinguished from a computer program or code by the fact that
the test bed requires the addition of subprograms or portions of a
subprogram which perform specific functions (in this case, the
particular variance reduction schemes) before it is a complete and
executable program,

A test bed is written in such a manner as to minimize the impact
of adding the coding required to perform these functions. This is neces-
sary sincc a major consideration in the evaluation of the different
algorithms is computation time, and the time required for computing
activities independent of the algorithms should be constant. Also, the
testing of a particular algorithm should require only the validation of
the coding for that algorithm, and nct the validation of the entive
software package. These requirements were implemented in the
development of IFAM (iterative Forwarca-Adjoint MORSE), the name
of the test bed utilized in the evaluation of the variance reduction technique.
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This section contains a description of the IFAM test bed. This
description is necessary for an understanding of the evaluation of the
different techniques which will be discussed in Section 4. In many ways,
the test bed represents to the analyst what equipment and instrumentation
represent to the experimenter. Therefore, the IFAM description has
been placed in the main body of this paper, beginning with a brief
description of the computer code MORSE (Ref. 11), which forms the
basis of IFAM. The rationale for selecting MORSE instead of other
codes as the IFAM basis is also discussed. The simulation of the
integral forward (Xg (x, ©)) and adjoint (ﬁg (X, )) transport equations
are also described, followed by a discussion of the test bed logic or
flow and a short description of IFAM-peculiar subroutines (e.g., FAIF,

which is used to calcilate the importance and biasing functions).

3. ¢t The MORSE Code

Since there was no computer prozram which performed the iterative
forward-adjoint Monte Carlo radiation transyort calculation, development
of the test bed was essential. One appraoch was to develop and code
the test bed from "scratch’, except for the cannibalization of certain
parts of other transport codes. !Icwever, in order to include the
capability to solve a wide range of transport problems in complex
geometries, this approach would require many man-years of effort.

A much faster approach is to utilize one .f the already developed
Monte Carlo traansport codes and make appropriate chenges so that

the iterative forward-adjoint calculations can be performed. Those
codes which were considered as the basis for the forward and/or
adjoint Monte Carlo calculations include MORSE (Ref. 11), CAVEAT
(Ref. 19), O6R (Ref. 20), O6R-D (Ref. 21), SAM-CE (Ref. 22),
ANTE-IT (Ref. 23), and GADJET (Ref. 24). The criteria on which
the code selections were based included speed, accuracy, representa-
tion of the physical phenomenology, geometry handling schemes,



input and output compatability betwe 2n the forward and adjoint modes,
ability to perform both forward and adjoint calculation, and applicability
to the iterative forward-adjoint method. Also, the author's familiarity
with the code and the effort requ'red to modify into the test bed were
ccinsidered. Comparison of the above codes soon revealed that MORSE
was far superior as the basis for the test bed.

MORSE is a multigroup code which handles neutron, gamma ray,
and coupled neutron-gamma ray problems for both the forward and
adjoint mode. The SAM-CE code system can perform forward neutron
and botk forvard and adjoint gamma ray problems. However, SAM-CE
requires three separate programs to accomplish these calculations and
it does not have a provisior for neutron adjoin¢ calculations. CAVEAT
is also a code system which handles the forward calculation of neutron,
gamma ray, and coupled problems, but performs no adjoint calculation.
Thus both CAVEAT and SAM-CE would require additional code develop-
ment to completely handle the adjoint calculation. The other code
candidates are restricted to either neutron (O6R, O€R-D, ANTE -II)
or gamma ray (GADJET) nroblems and only in one mode (forward

or adjoint}.

Therefore, the MORSE code definitely is better in respect to the
ability to perform botl. forward and adjoint calculation and applicability
to the iterative method. The criteria of speed and accuracy are very
difficult to evaluate, but it is generally accepted that MORSE is faster
than the other candidate hecause of its use of multigroup cross section,
although comparisons of accuracy (Ref. 25) have been inconclusive.
Only MORSE is a multigroup code, the other candidates use point cross
sections. This means that the physics of the collision process i8 contained
in the multigroup cross sections in MORSE, but are handled explicitly
in the other codes. However, any disadvantage which MORSE may acquire
in the representation of the physical phenomenology is balanced by the
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advantage of the multigroup code in the ease of generating the adjoint

cross sections.

Of all the geomeiry schemes studies, the co ab/ natorial geometry
package, developed for the SAM-CE codes, is best. Since there exists
a version of MORSE which contains this geometry scheme (Ref. 13),
then only O6R, O6R-D, and CAVEAT are at a disadvantage to the
other code candidates. MORSE also shows a very definite advantage
over the other candidates in input ancd outpu! compatability, since
only a few input quantities need to be changed to go from a forward
to an adjoint calculation. Only for one criterion does MORSE take
a definite second place, and that is in the author's familiarity with
the code. At the time the selection was performed, the author had
a detailed understanding of all aspects of CAVEAT, but only the
combinatorial geometry package in MORSE.

MORSE was also considered to require less effort to modify into
the test bed. The obvious choice for the test bed basis was MORSE,
and the test bed name, IFAM or Iterative Forward-Adjoint MORSE,
reflects that choice. The major modifications required to execute
this transformation were:

1) New logic so that both forward and adjoint calculation can be
performed in the same run;

2) New logic for inputting both forward and adjoint data and
the temporary siorage of the data for the mode not being
calculated;

3) Estimation and storage of the quantity to be used in the
opposite mode importance function;

4) Storage and application of the importance function for
biasing the distribution functions;

5) Calculation of the new importance and biasing functions
betwzen the imode calculations;
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6) Setting up an overlay (or segmentation) map to increase the
amount of core storage available for the importance function.
Other modifications for convenience (e.g. storing the cross section
input for the forward mode so they can be read from a data file
instead of the input unit during the adjoint input operations) were

also implemeatod.

In order to understand IFAM, a fa:.iliarity with the MORSE code
is required. Many of the features and attributes of MORSE have been
discussed above, Other characteristics that are needed to understand
IFAM are given below, Complate details on MORSE and its analysis
package, SAMBO, are contained in Reference 11, 13, and 14. In this
summation, the term MORSE will include the basic code package
(Ref. 11), revisions to MORSE such as those to the geometry routines
(Ref. 13), and the analysis package (Ref. 14),

As discussed above, MORSE is a multipurpose Monte Carlo trans-
port code for both neutrons and gamma rays. Both forward and 7.djoint
problems can be solved with little change in input data since multigroup
cross sections are used. All large data arrays have been included in
the variable dimensioning feature to optimize the use of core storage.
Complex three-dimensional, time dependents problems can be solved.
In addition, several types of importance sampling options are available,
including:

Source eneigy biasing,
Path length stretching,
Downscatter energy biasing,

Russian roulette and splitting.

(These options have been maintained or upgraded with data from the
importance function in IFAM.)
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By employing muliigroup cross sections for each different material
in the problem geometry, the physics of the interaction or collision
process is contained implicitly in the cross sections. The type of
particle, neutron or gamma ray, transported affects only the cross
sections, so that the logic is the same for both, except for certain
"editorial” 2xceptions. The multigroup cross sections account for
anisotropi: scattering by requiring that each group-to-group transfer
has an associated angular distribution which is calculated from the
input Legendre coefficients using a generalized Gaussian quadrature.
Isotropic scattering is handled by randomly selecting the outgoing
angles or direction cosines. The crnss section module processes
the input data so as to produce a normalized collision keranel which
is muitiplied by the nonabsorption probability for the forward mode
and by the analogous bt non-physical weight factor for the adjoint
mode. (This weight factor will be defined later.)

The geometry module in the MORSE version used as the IFAM
basis is the Combinatorial Geometry package (Ref. 13). This package
describes general three dimensional material configurations or regions
by performing the union, differences and intersections of simple bodies
such as spheres, boxes, cylinders, wedges, cones, and e:lipsoids,
and a more complex arbitrary convex polyhedron of four, five, or six
sides, Experience has shown that almost any configuration can be
represented in this manner.

Scoring options include those available in the SAMBO analysis
package (Ref. 14) plus built-in collision density and track length fluence
estimators (Ref. 13). SAMBO allows an arbitrary number of detectors,
energy-dependent response functions, energy bins, angle bins, and
time bins. The scoring can be divided into:

¢ Uncollided and total response,
e Fluence versus energy and detector,
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® Time dencndent response,
® Fluence versvs time, energy, and detector,

® Fluence ver: s angle, energy, and detector,

The standard deviation is calculated for each of the above quantities.
Estimators for point, surface, and volume detectors are available.
The technique of estimating the above quantities by simulating the for-
ward or adjoint integral transport equation is explained in the next

section.

3.2 Monte Carlo Simulation of Integral Transport Equations

Both the forward and the adjoint transport equations are simu-
lated in the IFAM test bed. The same coding i8s used for both of these
simulations, with changes only in input data (e.g., the source term and
the cross section scattering matrix) and the identification of the quanti-
ties calculated. The Mnnte Carlo simulation of the integral equations
is discussed below in a very simplified manner. Details of how the
specific phase space components are selected are contained in Thapter
4, This discussion emphasizes the mathematical and physical aspects
of the simulation. Also, explanation of the effect of importance sampl-
ing on the probability distribution functions will be delayed until
Chapter 4.

The simulation of the forward integral transport equation (2-92)
and the adjoint equation (2-117) will be considered simultaneously.
Thus it is vossible to compare both the similarities and differ<aces in
each of the three simulation steps. Table I shows the major e.ements
of the simulation. For each of the three steps, the table defines integral
equation terms which are simulated, radiation quantities which are esti-
mated, and the expression for the value of the estimate, The treatment
of both discrete and continuous probability distributions will be
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considered achievable in the sense of the Lebesque - Stieltjes integral.

That is, the probability of the evenis between Xy and X, is just:
*2
Pr [x, <Xsx,) = S‘/cuf(x) 3-1)
1

where X is a random variable with values x, and F(x) = Pr [ X < x] is the
cumulative distribution function. Assuming the existence of a sel of
random numbers uniformily distributed on the interval from 0 to 1, then

a specific value of x can be selected from F(x) by the following relationship:
X
o - f dF(X) (3-2)

where P has been randomly chosen from the uniform set of random number.
When the above relationship is solved repeatedly for x with f's taken from
the uniform random number set, then the x's will be distributed as F(X).
This principle is the basis for the Monte Carlo technique, and it i8 in

this sense that the expression ''select ..." is used below.

3.2.1 Source Selection

The source term in Equation 2-92 is expressed as Sg(f, w).
This term is completely genreral, and its exact form aepends on the physical
probiem being solved. If our source is an isotropic, mono-energetic point
source, then the source selection requires that only the energy group and
spatial coordinates be specified in the input. The angular coordinate,
usually expressed by the direction cosines, can be selected rather simply
by assuming an uniform distribution over the unit sphere. Details of this
selection will not be necessary for this discussion, since it will be assumed
that the selection of the energy group, position and direction is possible
from a properly defined source term. Thus, select the source parameters
(@, X', @') trom w;l- Sy ', &), where:
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W '%jj S0 (%) &) d&' R (3-3)

The term, W;l, normalizes our scurce term 80 tha! the selection is
performed on a properly normalized distribution function. Ws is also
the statistical weight assigned to each particle whose parameters are
selected from the source distribution function,

Since the particle selected above is emerging from the source,
then the weight of the particles, Ws’ is an estimate of the emergent
particle density, Xg‘ (X', @'). At this time in the simulation, WS should
be used to "score’ the emergent particle density, if desired. This is
usually done by keeping a running sum of the statistical weights in finite
elements of phase space,

The adjoint scurce term, given in Equation 2-117, is ﬁé) x, w).
This function of g, X, and @ must also be normalized so that these adjoint
source or adjuncton parameters can be seiected. After the adjuacton
parameters (g', X', w') have been selected, the adjuncton is assigned a
statisticai weight of:

* R (3 o')de' dx! -4
WS—Eijg,(x,u.)du. dx'. (3-4)

As in the forward source selection, the emergent adjuncton density,
G , (x,w'), can be scored by keeping a running sum of W and other
ad]unctxon weights as discussed below. However, nelther G g (x', «')
or xg. (x', ') are usually scored since they do not yield estimates of
the effect of interest when multiplied by the normal r2sponse functions
(e.g., see Equations 2-97 and 2-100 or 2-119),

3.2.2 Transport Step

Inspection of the integral term Equations 2-92 and 2-117 shows
that the next step in the simulation of the emergent pariicle density or
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emergent adjuncton density is the transport of our ''particle” from X' to x
along the &' direction. The next coll sion site, i, is selected from the
probability distribution function:
: f 2€ (7 - R 3) aR (3-5)
Ef (x)e o t

It is possible that the new collision site is outside the region ot
interest or has escaped into a non-reentrant void. In this case the history
of this particle (or adjuncton for the adjoint mode) is terminated and a new
source particle is selected. If x is within the region of interest, then this
transport step can be used to estimate the collision density, t!/g, (x,w"),
and hence the flux, ¢g' (X, @), in the forward mode. The estimate for
the collision density 'is just the statistical weight, WS, while the estimate
of the flux is WS/ Ef (x). These estimates are also made for finite elements
of phase space, with the spatial bin being that geometric region which

contains X.

It is also possible to get an estimate of the fiuence in those
geometric regions through which the particle passes in traveling from X' to
x. This estimate is based on the fact that the fluence can be defined as
the path length per unit volume. Therefore, the contributions tc the estimate
of the average fluence in a given geometric region when a particle travels
a distance S through the region is just the product of the statistical weight W
times the distance, and divided by the region volume, V (i.e., S - WS/V).

A running sum is usually kept of the product of S and W for each energy
group and region Juring the random walk calculations, This sum is
normalized by dividing by the region volume and the total number of source
particles at the conclusion of the calculation, producing an est..nate of the
fluence. Flux estimates can also be calculated for time dependent problems
by dividing the time range into time bins, recording the running sum estimate
for each time bin as well as energy and regicn, then including the time
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difference in the normaijzation term, For time dependent problems, the
flux estimate caiculation is identical to the fisence calculation, except the

source term is in units of per second.

Similarly, the transport step of the adjoint simulation produces
estimates of the adjoint flux. The statistic 1 weight at each collisio:. point
can be divided by the total cross section to produce an estimate of the
adjoint flux, X; (3z, - w). Track length estimates oi the adjoint flux
during the adjoint simulation «re calculated in the same manner and use
the same computer roding as the forward flux, Running sums of these
quantities are calculated by I"A™T for each energy group, region and
angular bin,

3.2.3 Collision Step

After the particle or adjuncton has been transported from either
a source or a previous collision site to a new collision site (e.g., from
X' to x), the physics of interaction was a nucleus must be sitaulated. This
process is usually assumed to occur instantaneously and at the selected
collision site. Mathematically, the collision step is a simulation of the
scattering or collision kernel, which results in the selection of a new
energy or energy group (g' to g) and a new direction (w' to w). In order
to make this selection of a new energy group and direction, the collision
kernel must be properly normalized. This normalization for the forward

rode can be performed in two ways:

1) Terminate (or kill) the particle or adjuncton with an
expectation proportional to the absorption probabiliity.

2) Adjust the statistical weight W g by multiplying by the
non-absorption probability.

The second method is the one most commonly used, and is the methoad
used in IFAM,



This methnd has the etfect of dividing the collision term into

two parts:
£ (&) LA e
@ i
¥ () zf (%)

which is the same as t.e term shown in Table 1. However, in this 1orm,

the first ratio represents the probability that the collision event will not
terminate the particle. Reducing the statistical weight by multiplying by

this ratio hag the effects of ""'killing'’ that fraction of the particle that would
"on the average' terminate the collision site. Of course, a part of a particle
cannot be terminated in the physical process, but this mathematical
technique is perfectly correct, It then allows the selection of the new energy
group and direction from a normalized function, as shown in the second

part of the above term.

For the adjoint simulation, an equivalent mathematical procedure
is used to simulate the adjoint collision term, However, the adjustment
of the statistical weight by

[£fzf " ®alamaa] /2@
g

has no physical analog such as the non-absorption probability. In fact,
the above term can have a value greater than one, unlike the non-absorption
probability. Use of the above term does allow simulation of the adjoint
integral equation for G ¢ (x, @) in a manner identical tc the forward inte ral
equation for x g (x. w). It also z2llows the transport step to be performed
with a normalized kernel, as discussed in Chapter 2. Only the cross
gsections, which are usually input for each problem, differ in the simulation
of the particle (neutror 2nd gamma ray) and adjuncton transport.

After the adjustment of the statistical weight to allow normali-
zation of the collision kernel, selection of the new energy group and
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direction is perfcrmed from the following term:

P8 E (R Iav[zj'rj' &
g'

:U-"l(:'”) d(:,‘”]

il

The general procedure for this selection is t0 determine the downscattering
probabilities into each group g from the current group g'. These prob-
abilities are precomputed and stored by the IFAM test bed. Then the
outgoing angle is selected from the discrete angle probability matrix

which corresponds to the selccted downscatter energy. If the new energy
group is outside the range of interest (e.g., below the energy at which

the response function for the effort of interest is zero), then the particle
or adjuncton history is terminated and a new source is selected. If the
history is not terminated, the transport step is performed with the new
parameters (g, ¥, w).

The estimation of quantities of interest at the conclusion of the
collision step is very similar to that of the source selection step, The
outgoing statistical weight is an estimate of the emergent particle density
Xg (x, w) for the forward mode and the emergent adjuncton density
G g (x, w) for the adjoint mode. Of course, the statistical weights can
change froin step to step, especially at the weight adjustment in the
collision step. For a problem in which importance sampling techniques
are utilized, weight adjustments will occur at other times during the
simulation. Chapter 4 will contain further discussion of these adjustments
for the techniques considered during this research.

3.3 IFAM Logic Design

The efficient implementation of the IFAM test bed on a computer
with limited core storage such as the 200](8 UNIVAC 1108 was a significant
problem. Both forward and adjoint data would be required during a single
run. Additional core storage would be required by the importance function

for the current mode and the flux estimator to generate the importance

3-14



function for the next mode. Both of these data arrays are functions of
three parameters: positior, energy, and direction. Additional storage
area is required for manipulation of the raw importance data to prepare

it for the next mode calculation. The core storage required for a typical
problem with 40 importance regions, 20 energy groups and 18 angular bins
is 14, 400 words for the importance function. The same number of words
are needed for storage of the data which will be used to generate the
opposite mode irportance function. Additional storage is required for
marginal probability distributions of the importance function. If scratch
areas are sec aside for data manipulation, then the core storage require-
ments for IFAM - peculiar data exceeds 44, 000 words for either mode.
The total for both forward and adjoint modes is greater than the 65, 536
(ZOOKS) words of UNIVAC 1108 storage. The 44, 000 words does not include
storage for the instruction bank and for random walk, geometry, cross
section, and analysis data,

Oktviously, techniques for reducing core storage requirements
are required. Use of readily available techniques such as segmentation
of che program provided some reduction, but not enough. Data could be
stored on data files, but the increase in run time and input/output operations
to retrieve and store data from datz files during the random walk compu-
tation was intolerable. It was obvious that all data needed for a given mode
calculation must be in core. To meet this condition and to allow sufficient
core storage for the additional data arrays, the logic flow of IFAM was
designed as shown in Figure 5. This design is such that both segmertation
and data storage or retrieval on data files can be utilized. In addition,
only that portion of the input or generated data that is required during a
given mode calculation resides in core. Scratch areas of core have been
eliminated by dynamic allocation of data array storage for temporary data
arrays. The result of this design is that the amount of core storage
available for data is more than 18,000 words greater than that for the
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MORSE codes even though IFAM requires a larger instruction bank. Thus,
iterative forward-adjoint Monte Carlo problems can be executed on the
UNIVAC 1108 without removal of any of the MORSE code capabilities.
Subsequent paragraphs will describe the IFAM logic design in more detail.

As explained in Section 3.1, the IFAM test bed is built around
the MORSE code. The overall design of IFAM is based on the calculation
of both forward and adjoint MORSE solutions alternately for a specified
number of iteratione, Befsre ead's moue calculation, an importance function
is computed and used during the mode calculation to alter the sampling
distributions. This importance function is derived from the flux estimate
stored during the Monte Carlo simulation of the opposite mode problem,
Figure 5 is a simplified diagram of the logic flow of this design. Each
process, input/output and decision operation have been nunbered for ease
of reference in the following discussion. Some of these numbered operations
are much more complex than others. For example, operation 14 consists
on one line of FORTRAN code, while ope1ation 2 and a subset of operation
10 encompass a complete MORSE forward mode calculation. However,
these operations do il'ustrate the major logic design of IFAM.,

The initial IFAM - peculiar operation occurs in the executive
or controller subroutine for IFAM, MORSE/IFA. Iteration control and
source region information are obtained by input operation 1. The iteration
control data includes the number of iterations, initial mode, the number
of batches and the number of particles or adjunctons per batch for each
iteration. Operation 2 is the input of the forward or F-mode cata. This
data includes the random walk, geometry, cross section and analysis data
as described in Appendix B. During the F-mode data input operation, both
the combinatorial geometry and the cross section data are temporily stored
on data file 16, This data is read during the A-mode input operations.
After all F-mode data has been read into the appropriate common areas,
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the FAMS subroutine 15 called and the data in these common areas are
written onto data file 17. This data file always contains the F-mode data
which is transmitted back into the approp: ..te core storage data array ai
the beginning of a F-mode calculation (represented by operation 14),
Following the F-mode data input is the A-mode data input. The A-mode
must follow the F-mode data input operation, but the initial random walk
calculation is arbitrary. The A-mnde dzta 1S read from cards (or card
images) which are on the input file and data file i7. A-mode data is

stcred in the same areas of core storage as the F-mode data, and likewise,
written onto the A- mode data file (16) by the FAMS subroutine.

After all input data has been read and stored on the appropriate
data file the iterative forward adjoint calculation begins., The initial
mode (forward or adjoint) is determined during operation 8 and the data
for that mode is reirieved from its data file. For example, if the initial
mode is forward, then data file 17 is read and the F-mode data put into the
core storage data arrays. This operation (15) is performed by the FAMS
subroutine, FAMS also initiates operation 9, which consists of calling the
FAIF subroutine for determining the importance functions and initializing
certain variables and parameters. With these operations, IFAM is now
ready to begin the random walk and analysis steps that constitute the major
part of the computation. The logic flow for this part of IFAM is very
similar to the MORSE random walk, except for modifications to accommodate
the distribution functions which have been altered by the importance function.
In addition the data which will be used to generate the importance function
for the opposite mode (i. e., the track length or collision density) is also
stored by angular bin. In MORSE, only energy group and importance region
deperdent quantities were stored. After each source selection and collision
event, flux estimates are made to the point detectors using statistical
estimation techniques. This data is cumulated and then output at the
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completion of operation 10 for the initial mode c: the first iteration, the
equivalent of one complete (but short) MORSE run is ter minated.

Of course, |FAM does not terminate, but perfornis operation 11
of Figure 5. This operation, executed in the FAMS subroutine, is
the first step in generating the importance function jor the next
mode calculation. It is followed by an output of the initial mode
data at the compietion of the calculation to the appropriate data
file. While many of the data arrays written on the data file are
the same as the input data for that mode, some arrays will have
been updated. These arrays include the geometry arrays, the
scattering and track length counters, and the user (analysis) arrays.
T2 data arrays at the completion of this initial mode are then stored
on the initial mode data file, as indicated by operation 12,

Since the above discussion was for the initial mode calculation
for the first iteration, then decision operation 13 will be negative,
and the mode will be changed to the next or opposite mede from the
initial mode at operation 14. The data stored on the data file for this
mode will be read and placed in core storage. For example, if the
adjoint mode had been specified to be the initial mode, then at
operation 15, the F-mode data is stored in ¢ ire so that a forward
Monte Carlo simulation can be performed by operation 10, Assuming
that more than one iteration is requested, then the next time that
operation 15 is executed, A-mode data will be put into core. In
any case, data for the ''non-initial’ mode is now in core storage.
The importance functions for this mode is calculated in the FAIF
subroutine and is passed to the random walk routines by operation 9.
At operation 10, another complete Monte Carlo calculation is
performed, including the output of the results. This calculation
is for the opprsite mode from the initial model, but uses data from
the initial mode calculation in the importance function to alter
the sampling distributions.
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After operations 11 and 12, a check i3 rﬁade to determine
if all iterations have been completed. If not, then the mode is
changed again, this time from the "'nor-initial’” to the initial mode.
The initial mode data is stored in core, new importance functions
are calculated from the previous run data, and the Monte Carlo
simulation routines of operation 10 are executed. After operations
11, 12 and 13 are performed, the ''non-initial"’ mode calculations
for the second iteration are executed.

This procedure continues until both mode calculations are
performed for all iterations. Then decision operation 13 is affirmative,
and the end-of-problem results are printed. Note that the above
logic design never requires both forward ard adjoint data in core
storage at the same time. In fact, the only significant amount of
additional data is the array used to store the flux estimator (WATK).
Further reduction in core requirements is obtained by segmentation
of the program into a main segment and four subsegments, with
nearly 19,000 words saved. Appendix A contains a more detailed
description of the segmentation of IFAM. Finally, the requirement
for scratch area in core was overcome hy storing data on the F- and
A- mode data files until it could be placed in {he blank common area
used by the flux estimator without destroying useful data. This
logic design resulted in a factor of 3 reduction of total core storage
requirement, making possible the utilization of the IFAM test bed on
the 65K word UNIVAC 1108.

3.4 Special IFAM Subroutines

Twenty two of the subroutines contained in the MORSE code had
to be modified in order to be ccmpatible with the IFAM test bed. In
some cases, the subroutine had to be coinpletely revised for IFAM

(e.g. NXTCOL), while other required only minor changes. In addition
to these twenty two subroutines, three new subroutines were required,
Two of these subroutines, FAMS and FAIF, are required to manipulate
the data between the two mode calculations and to generate the import-
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ance functions. The thir® “ubroutine, ANGBIN, determines the angular
bin for directicnal degendent storage or selects an outgoing angular
direction isotropically over a specified angular bin.

These subroutines have functions that are central to the design
of IFAM, and are described in the following sections to provide a better
understanding of the IFAM test bed.
3.4.1 Subroutine FAMS

Very early in the design of the IFAM test bed, it was recognized

that a software routine would be required to handle the exchange of
forward and adjoint data between mode calculations and control the
calculation of the importance functions, Consideration was also given
to using the same routine as the executive controller for IFAM, but
further analysis revealed that this function could be handied easier by
modifying the MORSE code coniroller (which is the MORSE subroutine).
The modified MORSE subroutine, MORSE/IFA, is now used as the
executive controller for IFAM, but it calls the FAMS subroutine for
mode dat. exchange and importance function control. Almost all of
the data used in FAMS is transmitted through the common areas. Only
two parameters are passed through the subroutine agreement list,
IADJ and MSR. IADJ specifies the current mode under consideration.
MSR specifies whether the mode data is to he stored on or retrieves
from the data files. The value of MRS also determines what data

manipulation will occur, as shown on Figure 6.

During the read operation, the flux estimate from previous mode
calculations is read into the FAI data array, which contains the import-
ance function during the random walk. For the first iteration and
initial mode, where no estimate exists, the FAI array is initialized
to zero. The design of the FAMS subroutine i8 such that either the
cumulative sum of all appropriate mode calculations or just the pre-
vious mode results are retrieved. Next, the input data is read from
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the mode data file and loaded into iaielled and blank common areas of
core storage. Only that data that is required for this particular mode
is put into the core. This read operation performs the same function
for IFAM as the input operation does for the MORSE code. It is follow-
ed by a call to the FAIF subroutine, where the importance functions
are generated for the present mode calculation. The initialization of
blank common storage areas and other variables complete the read
option tasks of FAMS. The store option (MSR<O) tasks are performed
at the conclusion of operation 10 on Figure 5, which include the random
walk calculations for the current mode., The flux estimate determined
during the random walk is either transferred to the FAI data array or

it is summed to all previous estimates of the flux for this mode (for
cumulative sum importance functions). In either case, this data is
written onto the current mode data file along with the other labelled

and blank common data arrays. The final flux estimate is retrieved
from this data file during the next mode cal~ulatior. and used to generate
the importance functions.

FAMS will also print the contents of all the laubelled common data
arrays which it handles and of selected portions of blank common., 7This
print is controlled by input data and provide a valuable aid in debugging
operations for both coding and input data checkout.

3.4.2 Subroutine FAIF

The generation of the importance functions which are used to

alter the source, transport and collision distribulion functions is

performed in the FAIF subroutine. While the exact design of this sub-
routine is dependent on the particular form of the importance function
being tested, several general features of FAIF are cornmon to most
cases. These features are described in the context of the version of
FAIF that normalizes the importance function array FAI and the input
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energy importance array EPROB on a region basis. Justification of
any particular methed of generating the importance functions will not
be discussed until Chapter 4.

Figure 7 indicates the major features of the FAIF subroutine logic
flow., During the initial mode of the first iteration, no flux estimate
exists, so only the input energy importance array EPROB requires
normalization. This data is then used to calculate the initial importance
functions. The functions calculated are:

1. RI - The region importance function

2. FAI - The energy and angular importance function normalized

for each region

3. TFAl' - The energy importance function for each region

4. BFS - The biased source energy function,

Details on how these functions are employed in I[IFAM are given
in Cnavter 4. Hnwever, it should be noted that FAI  is generated by
summing the FAI data array over all angular bins. The biased source
energy function BFS is calculated by multiplying the input source energy
function by FAI' for the source region and then normalizing. The above
functions are calculated prior to each new mode calculation.

Whenever the FAIF subroutine is called after the initial mode of
the first iteration, the flux estimate from the cpposite mode randem
walk must be normalized and stored in the correct angular bin for the
current mode importance function. Storage in the correct angular bin
is required because the flux estimate was stored in such a way that the
particle or adjunction is traveiing along its velocity vector instead of in
the opposite direction as required by the importance function (explained
in Section 2. 4.3 and Appendix D). Correcting the angular direction or
bin is handled by a transformation or permuiation array defined in
FAIF. The flux estimates are also divided by the region vclume, It
should te noted that the flux estimate has been storew 1n the FAI array
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by the FAMS subroutine. Also, all operations on the flux estimate,
including the angular bin correction, are performed in a manner that
requires no additional storage area.

Once the flux estimate has been properly normalized and trans-
formed, the final fcrm of the importance function is calculated by a
linear combination of the input energy importance function EPROB
and the flux estimate, The final form of the region importance function
RI is also calculated. RI is stored i the unused fission weight array
FWLO of biank common. Next, the FAI' and BFS arrays are calculated
from the FAI array. Thus, the importance functions and, in one case,
a biased distribution function (B FS), are computed by the FAIF sub-
routine for the iterative forward-adjoint Monte Carlo random walk.
3.4.3 Subroutine ANGBIM

In order to satisfy the requiremen! for angular biasing with the
imporiance function, the flux estimate taken during a given mode
calculation must be stored as a fuaction of direction. The MORSE code
provides for angular data at detector points, but not as part of the
region and energy dependent random walk arrays. Therefore, it was
necessary to set aside core storage for the region, energy and angular
dependent flux estimate array. To handle the angular dependence, an
angular bin structure was designed as shown in Figure 8. Also, the
ANGBIN subroatine written to place each paiticle or adjuncton in the
correct bin In addition, a software routine is required to select the
specific direction of an emerging particle or adjuncton after an out-
going angular bin has been selected. ANGBIN also performs this task.

Figure 9 illustrates how these two tasks are accomplished. Discussion
of the methodology used by ANGBIN and a description of the ANGBIN
optruiions are given below,

The angular bin structure was defined -y defining eighteen equal
solid angle bins. These bins can be defined on a sphere {see Figure 8)

as follows:
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Bin 1 - Polar cap about the +z - axis which is subtended by
the cone whose polar angle has a cosine of 8/9.

Bin 2 to 5 - Surface areas lying between the polar angles whose
cosines are 8/9 and 4/9, each of which occupy one
quadrant, with bin 2 in the first quadrant, bin 3 in
the second, bin 4 in the third, and bin 5 in the fourth.

Bin 6-9 - Surface areas lying between the polar angles whose
cosines are 4/9 and 0 (the equator), each occupying
one quadrant in sequential order.

Bins 10-18-These bins lie in the -z hemisphere and ware deter-
mined by taking the absolute value of the z-axis dir-
ection cosine, locat.ag the +z bin, then determining

the bin number by the formuia:
bin m = 19 - n, where n is the +z bin.

This angular bin structure allows for the rapid determination of the
bin from the direction cosines of the particle or adjuncton path, Each

angular bin has a solid angle of one-eighteenth of the total solid angle

{i.e. 27 ). Once the polar region of the direction has been determi-

ned, the quadiant is found by checking the sign of the x- and y-
direction cosine. This eliminairs the necessity for any complex arith-
metic calculations. Figure 9 shows the logic flow for determining the

angular bin from the direction co=ines.

ANGBIN also selects the direction cosine uniformily over the
input angular bin whenever the option variable, IOP. is input as zero.
Since each angular bin is limited ir its polar and azimuthal angle extent,
then the cosine of the polar angle and the azimuthal angle are selected

uniformily over the limits of the input bin, This can be dene quite simply
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by adding ithe product of an uniformily distributed random number times
the angular interval to the lower limit. If the lower azimuthal angle of
the input bin is QL , and the bin width is A nL , then the azimuthal angle
8 is calculated by:

=8 +R . a9, (3 - 6)

where Rn is the random number, Since the polar angle is zosine dis-
tributed, then the cosine of the polar angle is uniformily distributed.

Thus, the z - axic direction cosine C can be computed from knowing
the cosine of the lower limit CL and the cosine width ACL. Selecting
another uniformily distributed raadom number Rn, C is calculated as

shown below:

C = (.L+Rn. AC.'.' 3-17)

The direction cosines for the x - and v - axis can now be calculated

from the trigometric relations:

A= cos A Vl-c¢ , (3 -8)

B - sin § V1 -e2 , (3 -9)

f"z" . . . ‘

where 1 - ¢ is the sin of the polar angle. In this manner,

ANGBIN determines the direction cocire (A, B, C) of a direction

uniformily distributed over the input angular bin,
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4. METHODS DEVELOPMENT

The theoretical discussion of the iterative forward-adjoint
Monte Carlo method in Chapter 2 demonstrated the validity of the
method for biasing the sampling distributions in continuous phase
space. However, the solution of most practical radiation transport
problems requires the use of high speed computers and the reduction
of continuous phase space to finite phase cells in energy, position and
direction. Chapter 3 has already introduced the phase cell structure
which is employed in IFAM, but it did not answer the important question
of the validity of the finite ¢~ 1ls approach. This question can only be
answered by the development of methods for applying the information
obtained during the oppcrite mode calculation and then testing these
methods on real radiation transport problems. Methods development
will be addressed in this chapter, and the result of applying these

methods to a radiation transport problem is given in Chapter 7.

The central problem in the development of met!ads fur biasine
of our sampling distributions is to defi the importance function.
This problem is discussed in Section 4,1, where the form, format,
and restrictions which were placed on the importance functione are
described in detail. Application of the importance function to the
sampling distributions is discussed in the order that IFAM emp!3,'s
them. Section 4, 2 describes the biasing on the source distribution
in both energy and direction. The transport of the particle or adjunctrn
is next in IFAM, so Section 4. 3 defines various techniques considered
for the bia..ing of the transpe-t kernel. The mathematical justification
of thcse techniques is given and inherent problems and restrictions
are discussed. Thec major problems encountered during this research

were caused by the use of importance sampling techniques on the
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transpert kernel. However, since many important radiation transport
problems (e.y. . any involving deep penetrations) require altered
transport kerne!s, considerable offort wis spent in resolving these

difficulties.

Following selection of the cntl” jon .ite with the allered trans-
port kernel, the outgoing energy ana direction must be selected from
the collision kernel. Methods were also developed for altering the
sampling from the collision kernel by using the importance function,
These methods are discussed in Section 4,4, The first four sections
emphasize the development of importance sampling methods. Section
4,5, which is independent of importance sampling, contains a brief
description of a technique for avoiding the infinite variance prcbhlem
when estimating the responsc at a point detecter with the statistical
estimation or expected value method. This tcchnique was required
because the detector is contained in - scattering region, thus allowing
the possibility of an "infinite" estimate.

4.1 The Importance Function

The theoretical application of an importance function for altering
or biasing the sampling distributions in a Monte Carlo radiation
transport calculation were¢ discussed in Section 2. 3. In Section 3.4,
the computer routines which generate the importance function were
described in sufficient detail to explain the logical flow of the IFAM
test bed. In this section, the analytical and computational rationale
for the specific forms of the importance function will be given. As
stated in Section 2, 3, the importance function was used to alter the
sampling distrioutions, but the bias iniroduced was removed by correct-
ing the weight (e.g., the source particle is selected firom the altered
source distribution S'(P), but the weight assigned to that particle is
the ratio of the natural or true distribution, S(P), to S'(P)).
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The initial consideration in developing the importance function
was what quantity should be stored durirg a given mode (forward or
adjoint) calculation for defining the importance function for the opposite
mode, The theorctical considerations of Chapter & indicated that a
proper quantity would be the adjoint to the intearal equation being
simulated by the Monte Carlo procedure. Analysis revealed the f-:ct
that the adjoint angular flux, y_é (x, @) or d’é (x. %), is adjoint -0 the
emergent particle density equation (2-92). The forward angular ux
Py (X, «), is the quantity "adjeint’ to the integral equation (2-117)
similated during the adjoint mode (i. e., the "'adjoint equation is a
"forward'' quantity, the angular flux). Table 1 of Chapter 3 shows
that each of these two quantities can be estimated by two different
techniques. The [irst technique is based on the collision density
e, U= F_tcp). The forward or adjoint flux is estimated by dividing
the statistical weight at a collision point by the group cross section.
The second technique is based on the track length in a region. Since
the average flux in a given region is equal to the total track length of
all particles crossing the region divided by the region volume, then
the flux (forward or adjoint) can . estimated during the Monte Carlo
simulation by dividing the product of the statistical weight times the
path length in a given region by the region volume. Both of these
techniques have the attribute of requiring the same code design for

both the forward and adjoint mode calculations.

For a given test run, only one of these techniques can be used
to estimate the forward or adjoint angular flux. Therefore, it is not
necessary to store both the collision density and track length flux
estimators, and core storage is set aside for orly one of these ¢ stimates.
The track length estimator has been examined most thoroughlv, since
it provides an estimate of the flux in a region whenever the particle's

path intercepts the region, although no collision occurs there. The
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:rack length estimates are stored in the I FA version of the NXTCOL
subroutine. The statistical werght used 1o multiply the trach length

in each region is computed at the next collision point or at the escape
point. Track length data is stored in NXTCOL/IFA until this weight

is determined, and then a running sum of the product of the weight and
track length is stored as a function of energy, region and direction,
Division by the region volume is perf{or med for the sum of these estimates

in the FAIF subroutine.

Storage of the collision density estimator occurs after the trans-
port step (CALL YIATCOL) and vefore the collision step (CALL COLISN)
.n the MORSE subroutine. Like the track length estimator, a running
sum of the statistical weight is stored for the energv group, region
and angular bin of the particle at the collision point. This sum is
divided by the group cross section to produce the proper anpular flux
estimate. Because of the similarities between these calculations and
those for the MORSE scattering counters, this data has been put in
blank common immediatel s following the energy and region dependent
track length array.

At the beginning of the subsequent mode calculation, this data is
summed with the track length or coliision density ectimates from
previous IFAM interations. Provision has heen made tc use only the
previous mode data for the estimates, but the statistics are very poor,
This practice was soon discounted as a reasonable method of determining
the track length or collision density estimates for the importance

function.

Although the theoret:cal analysis indicated that the adjoint to
the integral equation being simulated was a proper choice for the
importance function, computational considerations place certain restric-

tions on this choice. The initial restriction is due to the fact that it
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is highly unlikely for each finite cell in phase space to have an accurate
estimate of the forward or adjoint flux, For example, consider the
test problem, which has 15 energy groups, 42 importance regions, and
18 angular bins, or a total of 11, 340 phase cells. Even if the histories
were uniformily distributed over these cells (of course, they aren't),
ten percent accuracy woulid require over a million estimates. This

is an impractical requirement, so a procedure wu- developed to use
already available importance information in addition to the Monte Carlo
"adjoint function'' estimate, This procedure can be represented by the

following equation:
1G,j,k) =a JG,j,k) + (1 -a)) CQ.jk), (4-1)

where

(i,j,k) =~ indices of the phase cell for the enercy group, region,
and angular bin, respectively,

I(i, j, k) - importance function for the (i, j, k) phase cell,

ay a parameter which is dependent on the number of
iterations or histories that have been executed
(0 -~ a - 1),

J(i, j, k) - normalized angular flux estimate from the opposite
mode calculations for the (i, j, k) phase cell,

C(i, j,k)” normalized input value for the (i, j, k) phase cell.

Equation 4-1 2llovs the IFAM test bed to increase the reliance
on the "adicint" flux (whicn is the forward ancular flux for altering
the distributions for the adjoint integrzl equation simulation) as the
gtatistical accuracy of that estimate increase. This is done by
increasing a. One method that has b ‘en used is to definc a hy
n/(n + 1), where n is the number of iterations. Arother possibility
is to pick some minimum number of histories, say m, then set a, to

n/(n +m), where n is the total number of histories completed for the
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specified mode. The importance function thus approaches the J(i, j, k)
value as the number of histories increase. Also, requiring that C(i,j, k)
must be positive { - 0) and that a must be less than 1 assumes that

no cell in phase space will have zero importunce. This is a potential
danger when cnly J(i, j,k) is used in the importance function. One very
good choice of C(i,j.k) is the adjoint flux from discrete ordinates
calculation where the finite cells in phase space used in the discrete

ordinates and IFAM are matched as closely as possible.

The importance function defined by Equation 4-1 provides the
basis for altering the Monte Carlo sampling distributions in IFAM,
As discussed above, there exist several options for determining each
of the major parameters in the equation (an, J(i,3, k) and C(i, i, k).
The result of chosing a representative range is given in the next chapter,
In addition, the most useful form of the importance functivn depends
on the particular sampling distribution being altered. The next three

sections discuss the forms in which I(i, j, k) is appl. d.

4.2 Source Biasing

Selection of a source particle usually requires that an energy
group, spatial position, direction, and .ge b selected from the distri-
bution functions. For che 1IFAM test bed, th- ape is assumed to be
zero and the spatial position assigned at the input source point. Then
an energy group a d direction is selected from the altered distribution
functions. While selection of an energy group and angular bin is
possible from a joint probability distribution functic :, the method used
in IFAM is consistent with the MORSE prcocedure cf selectii. the energy
group from the marginal distribution function, then selecting the angular
bin from the conditional probability function given in the above energy
group. The specific direction is defined by selecting the direction

cosines So that th« direction vector is uniform over the previc sly



chcsen angular bin, Details of this methodology are discussed below,

Consider first the selection of an energy group. The natural
energy dependent source distribution is one of the default input options
for IFAM, To generate the altered energy group distribution function,
the energy and region dependent marginal distribution function is
computed as shown below:

I'(,3,k) = I, 5,/ D 1(,j,k) (4-2)

pa—
i k
where I(i, j. k) is deiined by Equation 4-1. This new importance fuaction,

I'(i, j, k) is now normalized on a region basis. Next, the marg nal

distribution for the energy groups and importance regions is ccmputed
from I'(i, j, k)

I, =2 13,5, %, (4-3)
k
The final step in defining the altered energy dependent sonrce

distribution, S (i), is:

S= so - 1 (i,jsv%[sm- I (i) (4-4)

where S(i) is the input natural distribution and i; is the importance
region which contains the source. Note that the distribution has
been normalized, so that the initial statistical weight for a source
energy group of is is given by:

whi-sio Say) . (4-4)

Only the source direction remains to b determined. As in the

source energy selection, the importance function for the region contain-
ing the s urce point is used to supply angular biasing information.
Since the energy group and region are iknown, then the proper imrortance
function to be used is I' (is. g k). Defining D(is, Ig» k) as the angular
bin distribution functior, then the angular bin is chosen from:
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= Iy s _ - - R [] - . \

D (i, i, k) -D (1s, ig, kY- 1 (15, ig» K)
—_ Nipaoi N {4-5)
, [D(ls, Jg. KT (IS, Jg- k)] .

pi
After the angular bin, ks’ has been randomly chosen fr ym (4-5), the

direction cosines from the direction vector are determined in the
ANGBIN subroutine, as discussed in Section 3.4, However, the use
0. D (is, i k) instead of D (is, Jg k) for the selection of the outpoing
angular bin means that the statistical weight must be corrected. The
final statistical weight for the source is given by:

wli - wh . DGi i, k) D
S 5 S S

k) . {(4-6)
S

s g Ks
For the special case where the source is isotropic. Equation

(4-5) and (4-6) can be written in 2 much simplier form:

D i TG TR ‘4-

D(IS) sz k) I (lS. JS‘ k)/ Ik \lsy ]S/ 3 \4 7)
f_wl LRt

ws - \"s/[kmax Iy (15’ Ig’ 0 (4-8)

J
where Ik (1S, 35) is defined by Equation (4-3) and kmax is the total

number of angular bins., The two equations above were used for the
test problem.

4.3 The Altered Transport Kernel

The r-ost difficult of the regular Monte Carlo sampling distri-
butions to alter with the ge ‘:rated importance function is the transport
kernel. The reason is that the transport kernel is a continuous
exponential function, whereas the importance function is a set of
numerical values, one for each finite cell in phas=> space. The
importance function is easily applied to the discrete sample space of
the source and collision kernel, but this is not the rase for the
transport kernel. To better understand the mathematical foundation,
consider the following form of Equati ~ (2-62):



XX, E) =S, )+ [C(E|E:X) T(xIx:E) XX, ENdxdE".
{(4-9)

All quantities are defined the same as 1n Chepter 2.

Now, as in Section 2. 3, multiply the equation abo' e by the

importance function, represented by I (x, E). Letting:

XX B)IX E) X@X.E), (4-10)
and S (X, E) 1 (X, E) S (X, E), (4-11)
then:

{x B -S&, B+ [cEIE 0T &IFE
{1 (x, EVI (X', E')] Y(x', E") dx' dE'. (4-12)
Consider the following part of the integral term of (4-12)
CEIF: %) T ®IX: E) |16, E)/1G,E)]
- & B, ) ¢ &8 %

[I x, B . (&', E:')] TEIX:ED. (4-13)

Inspection of the right hand side of the above equation shows that the
importance function ratio has been separated intc the product of two
ratius, the first of which seems to apply naturally to altering the
collision kernel and the second to the transport kernel, For example,
the ratio multiplying the transport kernel is just the ratio of the
importance fun.tions at the beginning of the transport step (x') to that
at the terminal point (x). The directed encrgy (E') is that which
describes the energy and direction during the transport step, as

would be expected from physical considerations,

To use the altered transport kernel, some method for sampling

must be devised. This is a non-trivial problem, since the repreeentation
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of the kernel in th Monte Carlo simulation for the discrete phase
18:

n-1
T(0~ . ‘ N .
T(0—~ R)dR (ln,Il)..n4xp l_&.i(Rl Rj-l)

:1 )
ru (R - Rn_l,] dR (4-14)

where I.l is the importance function value in tae i-th region which the
path of the p.rticle intersects, with the collision assumed to occur
in the n-th region. The total group cross section for region i is
represented bv “., and Ri is tne distance to the i-th region boundary.
The distance from the source point to the collision point is R, and RO
is defined as 0. If the collision occurs in the same region as the
starting poin!, then the summation term (from ; = 1 to 0) is just 0.
Note that ir the importance function ratic in the right hand side of
Equation (4-14) is dropped, then the remaining statement is just the
natural ti-ansport kernel, T (0 - R})dR.

The problem with sampling from Equation (4-14) is that the

kernel is not in general normalized, that is:

[ To-Ruar =1 (4-15)
0
This can be seen from the following representation:
s T
- = (1 Yu.cxp N . - R,
Jo T (6~ R)dR — R U St T [\._, u].(R, R]-1)
17 i-1 i1
+u (R-R; )] dr (4-16)
[~ -1
_,(’) T(0-R)dR - 1 [Il - (12 -1,) exp -(,JlRl)
2
- AN - ) (4-17
+(I3 12) exp (.__1' uj (Rj Rj-l.’) Faean J )
-
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® o i
or {'{-(o ~R)dR =1+ Iil . i;1(1i+1 - 1) exp -[Z- “j(Rj'Rj-l)] .
(4-18)

Note that for the special case where all Ii's are equal, then the
altered kernel reduces to the natural kernel and is, of course,
normalized.

By forcing each path to an escape boundary and determining the
value of Equation (4-18), a normalized kernel can be constructed, but
the additional computation time will be excessively large for problems
with many regions. If this procedure is used, then the new kerrel is
defined by:

"l\‘(o-R)dR=-'I-'(0-°R)dR/‘L-'I-‘ (0 - R) dR, (4-19)
where the integral must be evaluated for every transport step.

The usual procedure employed in the alteration or biasing of the
transport kernel is to multiply the total group cross section term,
By by a fixed value. This technique can be extended to multiplication
by a variable which depends on the position. For the problems of
interest, the assumption of a region dependent parame’er is va.id,
as shown below., Let:

= Cy ;s (4-20)

where (:i is the region dependent parameter for a given path. This
means that Ci can be energy, direction and even initial position
dependent. Defining the altered transport kernel by:

_ 1-1
T (0~R)aR =uj exp -[3 WIR - R, )+ #{ (R -R )| aR, (4-21)
=1

prcduces A normaligation factor of:

< -2
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=1 Rj-1 j=1
+ C; (R-R, )] ar (4-22)
® 1 1 Ri
=> ‘exp [1_ Cpp;(R; R, ,)] C,u; exp-[Ciui(Ri-Ri_l)]dR!,(4-23)
- i Ri-
=i . exp -[gzl Cj“j(Rj'Rj-l)] . ll - exp - [Ci“i(ai'Ri-l)]: ,  (4-24)
-1

5 ‘ R
=2 jew - CpiR R, )| - exp -[1};1 Cj“j(Rj'Rj-l)]" (4-25)

Expansion of the above equation reveals that the negative exponential
term for i = n is the same as the positive exponential term for i = n + 1.
Thus, each of these pairs cancel, leaving oi.ly *he positive term for

i =1, Since the summation from j = 1 to 0'was previous shown to be 0,
then the normalization factor is the exponeﬂiial of 0 or:

éT(O—R)dR= 1. (4-26)

This proves that any altered transport kernel which is based on
replacing the total group cross section K with the product of a region
dependent parameter Ci and uy is normalized. An example of Ci is
the reciprocal of the constant path length stretching parameter BIAS
used in MORSE code. (Note that although BIAS is computed as a
region, energy and direction dependent parameter, only the one value
for the starting point of the path is used to alter the cross section
for all subsequent regions intersected by that path. ) Another example
of C, is the region importance function I, for a specified path (and
hence energy group and angular bin). Usually Ii is put through some
normalization process, such as:

C = 11/11 (4-27)
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or C = 1iZi: xj/zj, Iy - (4-28)

The summation of j is for the regions along the projected path of the
particle or adjuncton, and "j could be the mean free path through
region j.

Two methods have been examined for the implementation of the
importance function in the altered transport kernel. Both methods
use the concept of total cross section alteration by Ci’ since the
normalization factor for the altered kernel is unity. The first method
will be described without including the path length stretching capabilities
available in the MORSE code. However, these capabilities are included
in the methods implemented in IFAM and their addition to the method
will be discussed later. The notation will continue to denote region
dependence only, since the energy and direction are fixed during the
transport step. The major steps of the first method are outlined and
described below:

1. Select the mumber of mean free paths, MFP, from an
exponential distribution. Both the natural and altered transport kernels
are exponentially distributed, as indicated by Equation (4-21), where
Ci is unity in every region for the natural distribution. For this method,
our next collision point will occur at MFP mean free paths along the
path as determined by the altered cross sections, The collision point
will, in general, be different from the point at which MFP mean free
path is reached by using the real cross section along the path.

2. Determine the search length, ETA, from a preselected input
velue. The purpose of ETA is to define the number of mean free
paths along the projected path at which the importance function Ii’
cross section By and path length t data will be found. Beyond this
search length, the cross sections will not be altered. ETA is
arbitrary, but should be sufficiently large to assure that more
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than one region is intersected before ETA mean free paths are
reached. ETA should not be so large that the probability of reaching
ETA mean free paths is very small (e.g., 10 mean free paths).

If MFP is greater than ETA, then a normal transport came will

be played.

3. Using the combinatorial geometry routines of IFAM, step
through the geometry, determining for each region which the path
intersects (out to ETA mean free paths):

Ii: importance function value for the i-th region intersected
by the path (i = 1 is the starting point region)

ti: track length through the i-th region

By group cross section for the i-th region

A mean free path through the i-th region (xi=uiti) .

The Ii’ ti’ and A\ data are stored for future use. The region cross
section is not stored since )i and ti define B, and u is not needed

in the computation technique. A: 1 mathematical convenience,

the region containing the end of the search length ETA will be assigned
two index numbers. That portion of thc path that is between the
starting point and ETA will be denoted L.y m, where m is the total
nrwmber of regions intersected up to ETA mean free paths., That
portion of the region beyond ETA will be m + 1, and that part of the

path will not require an altei ed cross section.

4, Calculate the altered mean free path through each region
based on the constraint that the sum of the altered mean free paths,
x;, equals the sum of the real mean fre2 paths, A That is:

m m
2N = 240 (4-29)
i=1 i=1
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where xi is defined as:

The constant of proportionality, C, for Equation (4-30) can be
calculated from Equation (4-29):

m m
C = Zx‘/ zli W (4-31)
i=1 i=1

Inspection of the above equations reveals the fact that the altered
cross section that corresponds to xi can be written in the form of
Equation (4-28), where:

C, = C Ii . (4-32)
Therefore, the altered transport kernel has the same form as Equation
(4-21) and hence i8 properly normalized to unity.

5. Calculate the distance along the path at which MFP mean
free paths have been traversed as determined by the altered mean
free paths in each region. This step is equivalent to selecting the
distance R from the altered transport kernel. The computational
procedure is shown below:

a) Define ltlua £-th region by.

> A} S MFP < le' . (4-33)
b) Determlne the distance R from the starting point by:
-1
sz t, +t, . (MFP - Fx;)/ A, . (4-34)
i=1 o) s

The calculation of R consists of accumulating the distance up to the t-th
region and then adding that fraction of the distance that R goes into

the s-th region. The collision point, T, in three Jimensional space ‘s
calculated quite easily since the starting point, r', and the direction
cosines of the path are known.
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6. Since the above procedure produced a collision point different
from that which would be obtained in selecting from the natural trans-
port kernel, the statistical weight will be corrected to remove the
bias. The weight correction is just the ratio of the natural to the
altered transport kernel evaluated at the selected distance (R).

1-1
woTO=R _ #, exp '[E:{ Ayt H, (R'Rt-l)] , (4-34)
c =T 2-1
T (0"‘ R) ' v *
o {8, )
j:
where: e-1
R,y = f\:zlti

Since the ratio of u‘ to u'z is the same as >‘l, to x", and the exponential
factor in the denominator is MFP, then the weight correction is just:

A
W, = i’L exp (MFP - CMFP) . {4-35)
) A

The term CMFP is just the true mean free path from the starting point
to the collision point. It is computed in the same manner as R in
Equation (4-34), with the ti and t P replaced by A and A 2 respectively.

The above procedure should produce a unbiased game, since the
biss introduced by altering the transport kernel (Steps 1 - 4) are
compensated by correcting the statistical weight. Additional changes
have been made to the procedure to allow for the regular path length
stretching. The technique implemented requires only that the search
length ETA be multiplied by the bias term (BIAS) in step 2 and thea
Equation (4-31) which defines the constant of proportionality must
include a division by BIAS. No other changes are necessary to
implement the use of MORSE path length stretching. Some additional
logic was added to handle the special cases where the search leagth
is contained in one region anc where an escape occurs. The computational
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requirement for a single region path are much less than for the above
procedure, The logic for the escape condition is such that the above
procedure is used unless the escape would have occurred in a regular
MORSE run.

The second method which was investigated for application of the
importance function to the attempts to determine a pseudo-cross
sectinn which produces the same transport kernel as given by
Equation (4-14). This was done by equating (4-14) to (4-21) and
then solving for Ci. That is, set:

2 ‘ )
Cypy XP -[j‘::juj(nj-nj_ls] = 11/11) by exp-[jzz'iuj(nj- j_1)] . (4-36)
This equation can be written in the following form:

i
c, =0A) m oem- [a-cpu® -~ )], (4-37)
Equation (4-37) is transcendental, but solution by trial and error
seemed feasible, It can be shown that:

Cy =0/t ) €y e - [(-Chu R -R )] (4-38)

and C, =1. (4-99)

Thus, it is possible to solve (4-38) recursively. However,
not all combinations of (I /A, ,) C, ; and u(R, - R, ,) allow a real
solution, so the use of this procedure must be severly restricted.

A third procedure which may be implemented in future effort is
based on Equation (4-14) directly. As discussed earlier, this will
require the generation of the normalization factor. This can be done
by forcing the path to houndary of the geometry model, collecting the
track length and importance data, then evaluating Equation (4-17).

It can also be done by projecting the path through a specified sumber
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of regions and setting the importance ratio (Ii/ll) to 1 for subsequent
regions along the path, To preserve {he same escape probability,
the importance ra’io for each of the specified number of regions

may be renormal zed.

4.4 The Altered Collision Kernel

The collision step takes the incoming energy and direction
parameters at the collision poini selected by the transport step and
generates the outgoing energy and direction parameters. The major
effort in altering the collision kernel with the importance function
during this research has been to bias the selection of the energy
group toward the more important groups. Equation (4-13) indicates
that a proper importance function is just the ratio of the importance,
I(J—(, E), for the possible outgoing energies and directior 3 to the
incoming importance, I ()_t, E'). Representing the kernel in the finite
phase cell induces format yields:

[10, 5 0AG,, 3 k)] - Clg 3, =3, k=10 (4-40)
as the altered kernel, where the subscript ¢ on the indices denotes
the incoming collision parameters.

To select from the altered kernel, it must be normalized at each
scattering event. This is done by adjusting the statistical weight to
gccount for the absorption probability as discussed in Section 3. 2.
Normalization to account for the importance tunction in the altered
collision kernel i8 performed as shown below:

1

Cpl, i ~=Ng . L U,). Pl, i~ (4-41)

where I, (lc. j) is defined by Equation (4-3). P(lc, b~ j) is the
natural probability of scattering from group j c into group j.
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NE is the normalization factor, given by:
NDS
NE = E Ik(lc: j) P (lC’ ]c - ]) ’ (4'42)

where ND6 is the number of down scattering groups. This method
was easily adapted to the available MORSE coding with the energy
importance data being replaced by I, (i, j).

Methods to alter the selection of the direction have not been
implemented for the collision step. Work by other researchers
have revealed that the technique of sampling from che importance
fun ‘ion suffers from the generation of negative weights (Reference 27).
This is due to the fact that the reconstruction of the natural scattering
distribution from the Legrendre moments results in negative values.
For some problems, as many as 20 percent of the weights may be
negative after correcting for sampling from the importance function.
These researchers are examining the feasibility of altering just
the probability of scattering into the discrete angles used in MORSE,
This technique avoids the negative weight problem, and preliminary
calculations indicate a variance reduction for a highiv Airectional
problem.

4.5 Exclusion Volume Contribution

The m~thods developed in this research are to be applicable to
the difficult point source - point detector problem. This class of
transport problems usually uses "statistical'’ or "test flight" estimations
to evaluate the detector response. However, ! ese problems suffer
from the s0 called "infinite variance'' problems whenever s detector
is located in a scattering region. The infinite variance problem is
due to the fact that the response estimator has an R™3 term, where R
is the collision to detector point separation. For collision very near
the detector polat, R'z is very large, and hence the contribution from
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those collisions dominate the response estimate, und produce a much
larger response than the actual value. One method of overcoming
this problem is to place an exclusion region about the detector point.
The response contribution from any collision occurring in the region
is neglected. This procedure obviously produces low response
estimates.

To prevent the "infinite variance' problem and at the same time,
include the contributions from collisions near the detector, the
following technique was developed. Assume that the collision density
within the exclusion region is uniform, then a collision of point ¥
within the region could have occurred with equal probability at any
point in the region. Thus, a collision with incoming energy Ei and
direction Bi which has a statistical weight of W, will have the
following flux contribution:

i

w
<$(E)> = x— [fu (B)/1(E) P(E, - E, & &)

exc
r 2 .
. exp [ [ dr'] /r do dF , (4-43)
0
where: \'4 exc ~ volume of the exclusion region

and “s(Ei) = gcattering cross section for energy Ei‘
If we make the exclusion region a sphe.;e of radius R, then:
R r
GED =V % E) pE )] [r? exp-[[p®)ar |/r?

exe %

°fp(ai.;)dacm . (4-44)

The term in brackets outside of the integral is just the post collision
weight W, and the integral over the direction w is unity. The
integral over R can be evaluated if a 4 (E) term is introduced.
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This yields:

@@y = [W/®. v, )] . [1-epwErR) . (445

This contribution is computed for each collision in the exclusion
region and added to the total flux calculation so that the response
due to these collisions can be estimated.
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S. RESULTS AND CONCLUSIONS

The purpose of this research effort was to develop a computer test
bed for examining the iterative forward-adjoint Monte Carlo method and
to evaluate that method. Chapters 2, 3 and 4 contained a comprehensive
discussion of the theoretical basis for the forward-adjoint Monte Carlo
method, the development of the IFAM test bed and the variance reduction
technigues that have been implemented in IFAM. In this chapter, some
of the initial results will be discussed. Due to the large amount of effort
required to develop, code, and debug the IFAM test bed, valid results were
not obtained until the last month of this effort. Thus, the analysis of the
iterative forward-adjoint method has been restricted to a few simple cases
in order to meet contract delivery requirements. It is the intent of the
author to contimie the analysis of this method in much greater detail and
for & large variety of problems,

The results discussed here are for I FAM runs of three iterations
with various importance biasing methods in effect. These methods include
source direction biasing, source energy biasing and transport kernel biasing.
For comparison, a run with no biasing and another run with all of the biasing
methods discussed in Chapter 4 were made. The problem considered is a
cylinder of air with a point fission source and point detector. The detector
response function is the Henderson Tissue dose. Details on this problem
are given in Appendix C. One difference that exists in the output in Appendix
C and the problem results given here are the dimensions of the air cylinder.
These results are for a source-detector separation of 300 meters. The reason
for selecting this particular problem is the existence of extensive ammlytical
and experimental results that can be used to validate the IFAM results (see
References 28-30).

Table II contains a summary of the IFAM results for the five runs.
The uncollided dose is denoted by Du, Deu is the contribution of collisions

5-1



in the exclusion volume (see Section 4. 5) to the totul dose estimate, and
the total dose is denoted by DT' The symbol FSD following each dose
value stands for the fractional standard deviation, which is defined as

the square root of the sample variance of the mean divided by mean value
of the dose estimate. This quantity is the statistical estimate calculated
by the MORSE and IFAM codes. The UNIVAC 1108 :'un time is also

given, as well as the number of scattering events for each mode. Two
estimates of the ''goodness' of the variance reduction method are also
presented. The efficiency is defined as the reciprocals of the square of
the fractional standard deviation times the relative run time (which is 0.1
times the run time¢). The use of the relative run time was for convenience
in plotting the results, and since the efficiency is a relative measure of
goodness instead of an absolute measure, it has no effect on the conclusions.
The second measure is denoted a8 the "% Error" and is based on the
Henderson tissue dose calcrlated by the two-dimensional DOT-II Discrete
Ordinates computer code for the cylinder of air. That is:

% Error = 100 . (Dg -DT)/D- , (5-1)

where D_ is the DOT-III calculated value of 3. 408 X 101 Rads. Note that

this measure does not include any consideration for the computational effort
required (such as the run time).

The arrangement of Table II is such that both mode calculation results
for a given iteration are adjacent and are in the same row as the results for
the other cases for that iteration. The headings A and F denote the adjoint
and forward modes, respectively. The total dose ¢stimate, D’l" the total
dose estimate from collisions outside the exclusion volume, D’l‘ - Dm’ and

the efficiency has been plotted as a function of the iteration/mode sequence
for the five test cases in Figure 10.

Inspection of Tuble Il and Figure 10 indicate that the utility of the
iterative forward-adjoint method for the air cylinder problem is questionable.
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However, it should be noted that the dose calculated for the first mode -
first iteration, which is done with no biasing is a particularly good result.
Other calculations, which were identical except for the starting random
number, are not as close to the DOT-III value as the one shown. The
results of Table II are based on 200 neutrons for each of the 20 batches

in each mode calculation. In all cases, except the transport kernel biasing
case, the initial total dose is 3.312 X 10712 Rads per source neutron. This
gives an error of 2. 82 percent. The transport kernel biasing case required
a different number of random number, so that the initial total dose has an
error of -13. 47 percent for the same number of neutrons. An even more
erroneous result of 3.976 X 1019 Rads per source neutron was computed
for a run in which 80 batchea were used. This represents an error of

-16. 87 percent, even though three times as many neutron histories were
executed. Thus, the apparent increase in error from the initial to the

final estimate of the total dose is not necessarily real. In fact, there does
appear to be a slight decrease in error (and increase in efficiency), but

further calculations and analyses are required to substantiate this conclusion.

One problem with the iterative forward-adjoint method is an increase
in the error (and decrease in efficiency) in the se~ond mode of the first
iteration and the first mode of the second iteration. The apparent reason
for this effect is that the importance function is poorly defined due to the
small number of histories contributing to the estimate of the importance
function. Analysis of the importance functions generated by IFAM indicate
substantial differences in the values of the importance function in phase
cells which should have identical estimates (e.g. the source region
importance function for a given energy group in symmetric angular bins
suchas 2, §, 4, and 5). Figure 10 (A) and (B) seems to indicate that
this problem is less severe in the latter iterations which have data from
a large mumber of histories with which to generate the importance function.
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Another interesting feature of the iterative forward-adjoint method
is that the dose estimates tend to oscillate about the correct value. This
behavior is obvious in Figure 10, Unfortunately, the errors are not
consistently smaller, but this behavior can be explained on the basis of
the statistical deviatione from the correct dose value. Further analysis
is required to assure that the long term trend is to smaller error values.
It is possible that the importance function may cause fluctuations that
hinder the convergence to a very accurate results rather than assist that
convergence, as predicted by the "perfect game' in Chapter 2. This effect
may be caused by ""bad actor' hisiories, which produce a much larger
importance in a given phase cell than that particular phase cell actually
has. These "bad actors' have been noted in detailed studies of the energy,
angle, and region dependent importance functions generated by IFAM.
Some of these importance function values can be an order of magnitude
above the expected value,

Figure 10 (C) and (D) are plots of the total dose estimate in which
the contribution from collisions in the exclusion volume has been removed.
While the resulting dose still oscillates, the amount of oscillation is much
less than for the total dose. This is especially true for the case where only
the transport kernel biasing was used and where all of the methods descr.bed
in Chapler 4 were in effect. As part (D) of Figure 10 illustrates, the wild
fluctuations in total dose were largely due to collisions (or lack of collisions)
in the exclusion volume. Examination of the exclusior volume estimator
revealed no apparent deficiencies, but further consideration is required.

The validity of i{terative forward-adjoint method as a variance reduction
technique is at this time questionable. However, due to the fact that the
increase ‘n run time over the time required for MORSE calculations is only
& few percent, IFAM can be used to great advantage in many problems.



One major advantage is that IFAM can be used to compare run time,
efficiency, or other measures of ''goodness'’ between the forward and
adjoint modes of a given problem, Table II illustrates how the adjoint
mode requires less run time for a given number of histories than the
forward mode. The percent error for the no biasing case is also
comparable for the forward and adjoint modes. Therefore, the adjoint
mode is the better one to nse to calculate the air cylinder dose. IFAM
can be used to aid the researcher in determining the proper mode for a
given problem. Since very little time is required to set up most problems
in the adjoint mode, once the forward mode data has been designed, it
seems advisable to make a preliminary IFAM calculation with both modes
before selecting the single mode which will be used in the final calculation.

Another advantage of IFAM is that the importance function generated
usually agrees quite well with calculations made by more exact methods
(e.g. ANSIN) once the statistical fluctuations have been removed. Thus,
the forward and adjoint importance functions from an initial one iteration
1FAM calculation can be used to suggest subsequent biasing parameters
for MORSE or IFAM calculations,
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APPENDIX A
IFAM Structure and Operating Instructions

IFAM is a very large and complex piece of computer software.
Depending on the particular problem, over 100 subprograms may be
required for a given run. The complexity of IFAM is illustrated by
Figure A-1, which depicts the interrelationship of the main routine,
called IFAM, and the various subroutines and fanctions. Only system
mathematic library and intrinsic functions have been omitted. Also,
the subroutines may have more than one version. All cf these sub-
prcgrams have been included on 2 FURPUR tape for the IFAM user,
If the user wishes to use a specific version, he can easily use the @GMAP
to input a set of source language control statements to specify the
version.

A listing of the control statements used to run an IFAM problem
is given in Figure A-2. Note that the main segment of our overlay
contains both the main routine, called AAFAM, and the MORSE
subroutine. There are four first level segments: (1) DATAIN,
(2) CRANK, (3) FAMSEG, and (4) NOTUSED. DATAIN is a segment
that performs all of the input functions except for those few handled by
MORSE. It is further segmented into the specific random walk problem
data segment, RWALK, the cross section data segment, XSECIN, and
the amlysis data segment, ANALYSIS. These three segments are
represented in Figure A-1 by subroutines INPUT1, INPUT2, and INPUTS,
respectively. This can also be seen in the control statement list by the
fact that the IN cortirol statement after each SEG statement has these
element names, 1FAM was broken into three inpat segments so that
the CRANK segment would dominate the core storage requirements.

The CRANK segment handles the random walk calculations and the
output. The output can be handled in a separate segment, but the core
storage savings are small. Since the output routines are called at the
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Figure A-1. 1FAM Subroutine Structure
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Figure A-2. IFAM Coantrol Statement
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end of each mode, it was decided that the core storage savings were
less important than the extra time for segment interchange. Most of

the changes made in the Monte Carlo procedure are in the CRANK
segments.

The manipulation of the importance information between mode
calculations is handled by the third segment, FAMSEG. The driver
subroutine is FAMS, as shown by the element name. (With few exceptions,
the element name for a given subroutine name are the same.) The
fourth segment is made up of subroutines that are referenced in one
of the above subroutines but are never ca'led due to the IFAM problem
options. Those subroutines include the albedo, fission, and secondary
gamma rays options as indicated by the IN statement in Figure A-2,
Thus, this segment is called NOTUSED. By placing subroutines that are
referenced but never called, core storage is saved for essentially
loss of computer run time.

Ags mentioned above, IFAM has some subroutines with multiple
versions., Most of the original and unchanged subroutines have no
version identifier, so they can be considered as having the version
name of "blank. " Those subroutines modified for the IFAM test bed
were given a version name of IFA. New subroutines written for IFAM
may have either the 'blank’’ or IFA version name. The CLASS control
statement has been used as shown in Figure A-2 to tell the collector
that the IFA version of subroutines with multiple version names should
be inciaded in the collection. A listing of the subroutines stored on the
FURPUR tape will also show that some subroutines are available with
DLP version. Subroutines with the DLP version are used in conjunctioa
with the IFA versions to reduce the large amount of output, especially
of the input data. The DLP version is eapecially useful during coding
checkout where the same input data is used several times and a full
output each time is unnecessary.
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Figure A-3. Countrol Stream for IFAM Job



The execution of an IFAM job is illustrated by Figure A-3. The
stream of control and update cards is representative of that required
to execute the sar :ple problem (see Appendix C). The tape which is
assigned as FAMT contains 3 files, the first of which is a FURPUR
file and then next two are data files, written with an @DATA statement,
However, before the FURPUR file can be copied into the temporary
program file, TPFY, more mass storage must be assigned to TPFS.
This is accomplished by first releasing it @FREE TPF¥. ) and then
assigning a new TPF¥ is sufficient FASTRAND area.

Next, the scurce and relocacable elements on the FURPUR file
are copied into TPFS. (If only an absolute element is to be read in
and executed, the default TPF¥ storage is sufficient). This tape read
is follow=2d by the assignment of a data file DTFF for the forward mode
input data, which is read from the second file of the FAMT tape. This
file was written with an @DATA statement, and consists of card images.
During the read, columns 52 through 55 in the fourth card are corrected.
Next, another data file is assigned and the adjoint mode input data is
read from the third file of FAMT and the sar:e correction made to the
second card. Since the program and data are now on FASTRAND, the
tape (and tape drive) can be released with a @FREE.

The next 5 cards in the control stream are for processing the source
programs on TPFE. The main routine i updated to reduce the size of
blank common and the source and relocatable subprograms of CPUTIM
is deleted. This allows the system routine, CPUTIM/MSFC, to replace
the one on the FURPUR tape.

After preparing an entry point table, the @MAP statement is used
with its control statements to determine the final executable program.
FAMSEG is the name of a source ianguage control element on TPF§

(and bzace on the FURPUR file of FAMT). This element is to be updated



" by the addition of a library (SYSS*MSFCE) and the deletion of control
statement four. The result of these corrections to FAMSEG was
shown in Figure A-2. A table of the elements in TPF¥ is listed as
a result of the @PRT, T statement.

As explained in Chapter 4, data files 16 and 17 are requived for
every IFAM run, and they are assigned to FASTRAND as shown. Now
the execution of the absolute element FAMSEG generated by the collector
is initiated. The input card images stored on DTFF and DTFA are
added to the run streamby the two @ADD staternents. The result of
this operation will be the IFAM test bed as illustrated in Appendix C.
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APPENDIX B
IFAM INPUT INSTRUCTIONS

The input data required by IFAM is essentially the same as
that required by the Combinatorial Geometry Version of MORSE (see
Reference 13 ). However, because IFAM requires both forward
and ajoint mode data far a single run and because some of the MORSE
options are not implemented inIFAM (e.g. coupled neutron-gamma ray,
fissions and albedo calculations), this appendix contains a complete set of
input instructions for IFAM. Input data which maybe different in IFAM
than in MORSE has been caveated by placing as asterisk before the
input symbol in the input data format tables. The change or restriction
is given in the description for that input symbol or in supplemental
notes, The input data has been divided into four sections:

B.1 Random Walk and Iteration Data (B.1 of Ref. 13)
B.2 Combinatorial Geometry Data (B.3 of Ref. 13)
B.3 Cross-Section Data (B.4of Rel. 13)
B.4  Analysis Data (B.5 of Ref. 13)

Each subsection below contains an introduction to the data format tables
and delines the subroutines in which the data is read and the differences
between the forward mode (or F-mode) and adjoint mode (or A-mode)

input.

IFAM is so structured that the F-mode data is required to be
read initialiy. Two new data cards are required before the old B. 1 .
_ MORSE input data is read. These cards are now included as part of the
new B.1 F-mode input data. After reading and performing necessary
calculations with this data, IFAM reads the F-mode date dafined in B. 2,
B.3, and B.4 in ovder. This data is processed and thea stored on temporary

B-1



data file unit 17. Then IFAM reads the A-mode data, beginning with Card
Type A of Table B.1. Toenhance the clarity of the output, alltitle cards
should specify the input data mode (i. e, F or A). In order toreduce the amount
of inputdata required, certain parts of thegeometry (B. 2j and cross section (B. 3)
data is stored ontemporary data file unit 16 during F-mode input ain. i8 retrieved
during the A -mode input instead of reading this redundant data from cards. The
data handled in this way is explained in Tables B.2 and B.3. The input

and output logical unit numbers have been set to 5 and 6 respectively.

These units are defined both in MAIN and in G1, and must be changed in

both subroutines if other unit numbers are required.

As explained in Appendix A, it is possible to execute the Com-
binatorial Geometry Version of MORSE by supplying the proper MAP
statements to the UNIVAC-1106 Collector under EXEC-VIII. The input
data defined in this Appendix contains all the necessary information for
MORSE data preparation. Cards 1 and 2 in the B. 1 sectionapply only to
IFAM and should not be input for MORSE runs.

B.1 Random Waik and Iteration Data

This section contains all input data for IFAM or MORSE. except
the geometry, cross-section, and analysis data. The first three input
cards (Iabelled 1, 2 and 3) are peculiar to IFAM and are not required by
MORSE. They are read by the MORSE/IFA subroutine for the F-mode
input only. MORSE then calls INPUT which calls INPUT1/IFA. INPUT1/
IFA Jandles all of this input for the data defined in this section

H a description of the input data contains "IFAM:", then any
information following this symbol pertains only to IFAM input.



TABLE B.1 - RANDOM WALK AND ITERATION DATA

Card Input
Type Field/Format Symbol Description
1 1-5A5 SIMOD IFAM: Initial mode to be executed
0: F-miocde
1: A-Mode
6-10/15 *NITP IFAM: Number of Iterations for this run
(s 15)
11-80/1415 *NPPB(I)] IFAM: NITP order pairs giving the
1-80/1615 *NBTI(I) number of particles per batch (NPPB(I)
and the number of batches (NBIT) for the
I-th iteration.
2 1545 *NSRF IFAM: Source region number for the
F-Mode.
6-10-I5 *NSRA IFAM: Source region number for the
A-Mode.
11-20/E10. 4 PSC IFAM: Search length constant for the
transport kernel routine (NXTCOL) in
mean free paths.

3 Intermediate print ani mode data write options executed at the end

of each mode. INTPR(1) - INTPR(12) are for selected labelled
commons and blank common. INTPR(13) and INTPR(14) control mode
data writes to data file. Options are:

0 - Off. Do not write
1 -0n. Write information on appropriate output unit,

-1 - End. Terminate search for any further output deter mined
by INTPR(1) through INTPR(12). Doesn't affect

INTPR(13) and INTPR(14).
1-8/15 INTPR(1) IFAM: Labelled common APOLLO
6-10/15 INTPR(2) IFAM: Labelled common USER
11-15A% INTPR(S) IFAM: Labelled common GOMLOC
16-30/18 INTPR(4) IFAM: Labelled common LOCSIG



TABLE B.1 - RANDOM WALK AND ITERATION DATA (cont'd)

——
b ———

Card Input
Type Field/Format Symbol Description
3 21-25/15 INTPR(S5) IFAM: Labelled common PDET
26-30/15 INTPR(6) IFAM: Labelled common BNKNMC
31-35/15 INTPR(7) IFAM: Labelled common BANK
36-40/15 INTPR(B) IFAM: Labelled cominon RANDOM
41-45/15 INTPR(®) [IFAM: Blank common from Isl to
4*NMTG
46-50/15 . INTPR(10) IFAM: Blank common containing the
Region Importance (RI)
51-55/15 INTPR(11) IFAM: Blank common containing source
region FAI values
56-30/15 INTPR(12) IFAM: Labelled common FAM
61-65/15 INTPR(13) IFAM: Forward Mode output on data
file 20*
66-70/15 INTPR(14) I1FAM: Adjoint Mode output on data
file 20*
*Includes all of blank common and the
following labelled commons: APOLLO,
USER, GOMLOC, LOGSIG, PDET,
BNKNMC, BANK, RANDOM and FAM
A 1-80/20A4 TITLE("  Title Card. Any character other than 0
hlank or alphanumeric in Column 1 will
terminate the job.
B 1-5/15 *NSTRT Number of particles per batch
IFAM: INSTRT is overridden by NPPB(I)
6-10I5 NMOST Maximum number of particles allowed
for in the bank(s); may equal NSTRT if
there is no splitting, fission, and secondary

generation during execution. If bank sise

| is exceeded by more than 50 due to fission
or secondary gamma ray geasration, the
iob is terminated.
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TABLE B.1 ~- RANDOM WALK AND ITERATION DATA (cont'd)

Card Input
Type Field/Format Symbol Description
B 11-15/15 *NITS Number of batches.
IFAM: Overridden by NBTI(I)

16-20/15 *NQUIT Number of sets of NITS batches to be run
without calling subroutine INPUT,
IFAM: Restricted to 1.

21-25/15 NGPQTN  Number of neutron groups being analysed.

26-30/15 NGPQTG  Number of gamma-ray groups being
analvzed. _

531-35/15 NMGP Number of primary particle groups for
which cross sections are stored; should
be same as NGP (or the same as NGG
when NGP=0) on Card XB ready by sub-
routine XSEC.

36-40/15 NMTG Total number of groups for which cross
sections are stored; should be same as
NGP + NGG as read on Card XB read by
subroutine XSEC.

41-45/7% NCOLTP  Set greater than zero if a collision tape
is desired; the collision tape is written
by the user routine BANFR.

46-50/15 *JADJM Mode Switch, €0 for F-Moa>; >0 for A-Mode
IFAM: Overridden by IMOD.

51-55/F.0 AXTIM Maximum clock time in minutes allowed
for the problem to be on the computer.

56-60/15 MEDIA Number of cross-section media; should
agree with NMED on Card XB ready by
subroutine XSEC.

61-65/15 *MEDALB Albedo scattering medium is absolute value

of MEDALB: if
=0, no albedo information to be read in,

<0, albedo only problem -- no cross
sections are to be read,

>0, coupled abedo and transport problem
IFAM: BSet = 0 only.



TABLE B.1 - RANDOM WALK AND ITERATION DATA (Cont'd)

—
—

Card Input
Type Field/Format Symbol Description
C 1-5/15 ISOUR Source energy group if >0, if ISOUR <0,
SORIN is called for input of Cards E1 and
E2.

6-10/15 NGPFS Number of groups for which the source
spectrum is to be defined. I ISOUR <O,
NGPFS 2 2.

11-15/15 *ISBIAS No source energy biasing if set less than
or equal to zero; otherwise, the source
energy is to be biased, and Cards E2 ars
required.

IFAM: Source biasing is handled by code.
Set ISBIAS > 0.

16-20/15 NOTUSD An unused variable.

21-30/E10, 5 WTSTRT  Weight assigned to each source particle.

31-40/E10.5 EBOTN Lower energy limit of lowest neutron
group (eV) (group NMGP),

41-50/E10.5 EBOTG Lower energy limit of lowest gamma-ray
group (eV) (group NMTG).

51-60/E10, 5 TCUT Age in sec at which particles are retired;
if TCUT=0, no time kill is performed.

61.70/E10,5 VELTH Velocity of group NMGP when NG >0;
i.e., thermal-neutron velocity (cm/sec).

D 1-10/E10.4 XSTRT Starting coordinates for source particles
11-20/E10. 4 YSTRT} (Maybe overridden by changes !n subroutine
21-30/E10. 4 ZSTRT SOURCE).

31-40/E10. 4 AGSTRT  Starting age for source particles (see
above note).

41-50/E10.4 *UTN? Source particle direction cosines; if all

§1-60/E10. 4 *VINP are zero, isotropic direction are choses.

61-70/K10. 4 *WINP IFAM: Selection based on FAI array.




TABLE B.1 - RANDOM WALK AND ITERATION DATA (Cont'd)

Card
Type Field/Format

Input
Symbol

Description

E1l 1-70/7E10, 4

E2 1-70/7€16. 4

F 1-70/7E10, 4

1-5/15

6-10/15
11-46/3611

47-59/1311

1-24/4X,020

1-5/15

6-10/15

Fs(1)

*Bre(I)

ENER(I)

*NHISTR

NHISMX
NBIND(J)

NOOLLS(J)

RANDOM

NSPLT

NKILL

NGPFS values of FS, where FS equals the
unnormalized fraction of source purticles
in each group.

NGPFS values of BFS(I), where FBS(I) is
the relative importance of a source in group
I. Needed only if ISOUR 20 and ISBIAS >0,
IFAM: BFS values are not input.

NMTG values of the energy (in eV) at the
upper edge of the energy group bovndaries,

G (Omit if NCOLTP on Card B <0, otherwise see Ref. 13).

Logical tape number for the first collision
tape. IFAM: NHISTR cannot be the same
for F- and A-modes.

The highest logical number that a collision
tape may be assigned.

An index to indicate the collision parameters
to be written on tape (J=1, 38).

An index to indicate the types of collisions
to be put on tape.

Starting randoin number.

Index indicating that splitting is allowed
it >0.

Index indicating that Russian roulstte is
allowed if >0,



TABLE B.1 - RANDOM WALK AND ITERATION DATA (Cont'd)

—m—
———

Card Input
Type Field/Format Symbol Description
11-15/15 NPAST Index indicating that exponential transform
is invoked if >0 (subroutine DIREC required).
16-20/15 NOLEAK  Index indicating that non-leakage is
invoked if > 0.
21-25/15 IEBIAS Index indicating that energy biasing is

allowed if >0. IFAM: If IEBIAS f,
EPROB will be set to (NGPREG)~* and
IEBIAS to 1 by INPUT1/1FA.

26-30/15 MXREG Number of regions described by geometry
input (will be set to one if £0). If ENDRUN
is used, a data array relating media number
to region numbers must be given in a data
statement in ENDRUN.

31-35/15 MAXGP Group number of last group for which
Russian roulette or splitting or exponential
transform is to be performed.

(Omit if NS PLT + N\'ILL + NPAST = 0; Repeat the data set given
below until all zroups and regions input; Terminate Card J read
with negative value of NGP1).

1-5/15 NGP1 From energy group NGP1 to encrgy group
6-10/15 NDG NGP2, inclusive, in steps of NDG and from
11-15A5 NGP2 region NRG1 to NRG2, inclusive, in steps
16-20/15 NRG1 to NDRG, the following weight standards
21-25/15 NDRG and path-stretching parameters are assignad.
26-30/15 NRG2 If NGP1 = 0, groups 1 to MAXGP will be

used; if NRG1 = 0, regions 1 to MXREG will
be used (both in steps of one). Usually
NDG = 1 and NDRG = 1.

31-40/E10.5 WTHIH1 Weight above which splitting will occur.
41-50/£10.5 WTLOW!1  Weight below which Russian roulette is played.

51-60/E10.5 WTAVEl  Weight given those particles surviving
Russian roulette.
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TABLE B.1 - RANDOM WALK AND INTERATION DATA (Coat'd)

Card Input

Type Fileld/Format Symbol Description

J 61-76,/£10, 5 PATH Path-length stretching parameters for
use in exponential transform (usually
0< PATH <),

K (Omit if IEBIAS on Card I s 0)

1-70/7E10. 4 *EPROB Values of the relative energy importance
(IG:NREG) of particles leave a collision or source
in region NREG for IG=1, NMTG. Input
for each region (NREG=1, MXREG) must
hegin on a new card. IFAM: EPROB is
assumed uniform if IEBIAS < 0.
(IG = 1, NMTG: NREG = 1, MXREG).

L (IFAM: Al variables must be < 0)

1-5/15 *NSOUR Set < 0 for a fixed source problem; otherwise,
the source is from fissions generated in
a previous batch,

6-10/15 *MFISTP Index for fission problem, if < 0 no fissions
are allowed.

11-15A5 *NKCALC The number of the first batch to be included
in the estimate of k; if £ 0 no estimate of k
is made.

16-20/18 *NORMF  The weight standards and fission weights

are unchanged if < 0; otherwise, fission
weights will be multiplied at the end of
each batch, by the latest estimate of k and
the weight standards are muitiplied by the
ratio of fission weights produced in previous
batch, For time-dependent decaying
systems, NORMF should be > 0.

M (Omit it MFISTP < 0 on Card L)
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TABLE B.1 - RANDOM WALK AND ITERATION DATA (Cont'd)

N ———————— —
e

mamam——

Card Input
Type Field/Format Symbol Description
M 1-70/7TE10. 4 *FWLO(I) Values of the weights to be assigned to

|

fission neutrons (I = 1, MXREG).
IFAM: No fission prablems allowed.

(Omit i MF{STP < 0 on Card L)

1-70/7E10. 4

*FSE(IG,
IMED)

Fraction of fission - induced source
particles in group IG (IG = 1, NMGP)
and medium IMED (begin a new card for
each medium where IMED = 1, MEDIA).
IFAM: Nc fission problems allowed.

(Required input only for coupled neutron-gamma ray problem)

1-70/TE10. 4

*GWLO(IG, Values of the weight to be assigned to

NREG)

the secondary particles being generated.
NMGP groups are reac for each region
in a forward problem and NMTG-NMGP
for an adjoint. nput for each region
must start on a new card. IFAM: Ne
coupled proble